Membrane organization and differentiation in the guinea-pig spermatozoon

  • Daniel S. Friend
Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 2)


Studied in extensive morphological detail, the plasma membrane of the guinea-pig spermatozoon (1–11) — like those of all other mammalian sperm — is divided into structural regions (macrodomians) closely correlating with the functional segments of the cell (2, 12–15). In each macrodomian, plasmalemmal, cytoplasmic, and functional diversities exist. Moreover, the membrane macrodomains themselves contain microdomains, thus contributing to further heterogeneity in the major vicinities of the cell. The parameters in which the primary sectors differ — that is, the acrosomal cap of the head, the equatorial and postacrosomal segments, and the midpiece, annulus, and principal-piece of the tail — involve many factors. These include the surface coat (morphology, antibody-specificity, lectin binding, surface-charge); the plasma membrane (intramembranous particle numbers and configurations, and the lining of the membrane); and possibly membrane sterol content, anionic-lipid asymmetry, and lipid-phase state. Similar forms of heterogeneity (6, 9) are provided in several internal organelles, particularly the nuclear envelope and the mitochondrion.


Acrosome Reaction Anionic Lipid Sperm Tail Intramembranous Particle Sperm Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fawcett DW: A comparative view of sperm ultrastructure. Biol Reprod Suppl 2: 90–127, 1970.PubMedCrossRefGoogle Scholar
  2. 2.
    Fawcett DW: The mammalian spermatozoon. Develop Biol 44: 394–436, 1975.PubMedCrossRefGoogle Scholar
  3. 3.
    Friend DS: Organization of the spermatozoal membrane. In: Immunobiology of the gametes. Edidin M, Johnson MH (eds). Alden Press, Cambridge, pp 5–30, 1977.Google Scholar
  4. 4.
    Friend DS: Freeze-fracture alterations in guinea-pig sperm membranes itself is highly fluid. In addition, sharp interfaces between sterol and phospholipid rich and poor areas exist where fusions presumably originate after the addition of calcium preceding gamete fusion. In: Membrane-Membrane Interactions. Gilula NB (ed) Raven Press, New York, pp 153–165, 1980.Google Scholar
  5. 5.
    Friend DS, Fawcett DW: Membrane differentiations in freeze-fractured mammalian sperm. J Cell Biol 63: 641–664, 1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Friend DS, Heuser JE: Orderly particle arrays on the mitochondrial outer membrane in rapidly-frozen sperm. Anat Rec 159: 198–199, 1981.Google Scholar
  7. 7.
    Friend DS, Orci L, Perrelet A, Yanagimachi R: Membrane particle changes attending the acrosome reaction in guinea-pig spermatozoa. J Cell Biol 74: 561–577, 1977.PubMedCrossRefGoogle Scholar
  8. 8.
    Koehler JK: The mammalian sperm surface: studies with specific labeling techniques. Int Rev Cytol 54: 73–107, 1978.PubMedCrossRefGoogle Scholar
  9. 9.
    Friend DS: Plasma-membrane diversity in a highly polarized cell. J Cell Biol 93: 243–249, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Koehler JK: Changes in the fine structure of the guinea-pig sperm head following experimental treatment. In: The Functional Anatomy of the Spermatozoon. Afzelius BA (ed) Pergamon Press. Oxford and New York, pp 105–114, 1974.Google Scholar
  11. 11.
    Koehler JK, Gaddum-Rosse P: Media induced alterations of the membrane associated particles of the guinea-pig sperm tail. J Ultrastruct Res 51: 106–118, 1975.PubMedCrossRefGoogle Scholar
  12. 12.
    Austin CR: Membrane fusion events in fertilization..J Reprod Fertil 44: 155–156, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    Bedford JM, Cooper GW: Membrane fusion events in the fertilization of vertebrate eggs. In: Membrane Fusion. Poste G, Nicolson GL (eds). Elsevier North-Holland Biochemical Press, pp 65–125, 1978.Google Scholar
  14. 14.
    Meizel S: The mammalian sperm acrosome reaction. In: Development in Mammals, Vol. 3. Johnson MH (ed). North-Holland, Amsterdam, pp 1–64, 1978.Google Scholar
  15. 15.
    Yanagimachi R: Mechanisms of fertilization in mammals. In: Fertilization and Embryonic Development in vitro. Mastroianni L Jr, Biggers JD (eds). Plenum Publishing Corp., New York, pp 81–182, 1981.Google Scholar
  16. 16.
    Yanagimachi R, Usui N: Calcium dependence of the acrosome reaction and activation of guinea-pig spermatozoa. Exp Cell Res 89: 161–174, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Bearer EL, Friend DS: Modifications of anionic lipid domains preceding membrane fusion in guinea-pig sperm. J Cell Biol 92: 604–615, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Koehler JK: Lectins as probes of the spermatozoan surface. Arch Androl 6: 197–217, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Myles DG, Primakoff P, Bellve AR: Surface domains of the guinea-pig sperm defined with monoclonal antibodies. Cell 23: 433–439, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Millette DF: Distribution and mobility of lectin binding sites on mammalian spermatozoa. In: Immunobiology of the Gametes. M. Edidin M, Johnson MH (eds). Cambridge University Press, Cambridge, pp 51–71, 1977.Google Scholar
  21. 21.
    Flechon J-E: Ultrastructural and cytochemical analysis of the plasma membrane of mammalian sperm during epididymal maturation. Prog Reprod Biol 8: 90–99, 1981.Google Scholar
  22. 22.
    Yanagimachi R, Noda YD, Fujimoto M, Nicolson GL: The distribution of negative surface charges on mammalian spermatozoa. Am J Anat 135: 497–520, 1972.PubMedCrossRefGoogle Scholar
  23. 23.
    Elias PM, Friend DS, Goerke J: Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J Histochem Cytochem 27: 1247–1260, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Bradley MP, Ryans DG, Forrester IT: Effects of filipin, digitonin, and polymyxin B on plasma membrane of ram spermatozoa - an EM study. Arch Androl 4: 195–204, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Orci L, Miller RG, Montesano R, Perrelet A, Amherdt M, Vassalli P: Opposite polarity of filipin-induced deformations in the membrane of condensing vacuoles and zymogen granules. Science 210: 1019–1021, 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Teuber M, Miller IR: Selective binding of polymyxin B to negatively charged lipid monolayers. Biochim Biophys Acta 467: 280–289, 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Bearer EL, Friend DS: Anionic lipid domains: correlation and functional topography in a mammalian cell membrane. Proc Natl Acad Sei USA 77: 6601–6605, 1980.CrossRefGoogle Scholar
  28. 28.
    Friend DS, Bearer EL: β-hydroxysterol distribution as determined by freeze-fracture cytochemistry. Histochem J 13: 535–546, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Schlegel RA, Phelps BM, Waggoner A, Terada L, Williamson P. Binding of merocyanin S-540 to normal and leukemic erythroid cells. Cell 20: 321–328, 1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Mercado E, Rosado A: Structural properties of the membrane of intact human spermatozoa. Biochim Biophys Acta 298: 639–652, 1972.Google Scholar
  31. 31.
    Bearer EL, Friend DS: Maintenance of lipid domains in the guinea-pig sperm membrane. J Cell Biol 91: 266a, 1981.Google Scholar
  32. 32.
    Papahadjopoulos D: Calcium-induced phase changes and fusion in natural and model membranes. In: Membrane Fusion. Poste G, Nicolson GL (eds). Elsevier/North-Holland Biomedical Press, pp 765–790, 1978.Google Scholar
  33. 33.
    Phillips DM: Surface of the equatorial segment of the mammalian acrosome. Biol Repirod 16: 128–137, 1977.CrossRefGoogle Scholar
  34. 34.
    Karim M, Duarte J, Ruysschaert M, Hildebrand J: Affinity of ad riamycin to phospholipids - a possible explanation for cardiac mitochondrial lesions. Biochem Biophys Res Commun 71: 658–663, 1976.CrossRefGoogle Scholar
  35. 35.
    Holt WV, Bott HM: Chemically induced fusion between ram sperm-atozoa and avian erythrocytes: an ultrastructural study. J Ultrastruct Res 71: 311–320, 1980.PubMedCrossRefGoogle Scholar
  36. 36.
    Mollenhauer HH, Morre DJ: Dictysome-like structures with cylindrical intersaccular connections (microtubules?) in guinea-pig spermatocytes. Am J Anat 150: 381–394, 1977.PubMedCrossRefGoogle Scholar
  37. 37.
    Fawcett DW: Unsolved problems in morphogenesis of the mammalian spermatozoon. In: International Cell Biology. Brinkley RB, Porter KR (eds). The Rockefeller University Press, New York, 1977.Google Scholar
  38. 38.
    Friend DS, Elias PM, Rudolf I: Disassembly of the guinea-pig sperm tail. In: The Spermatozoon. Fawcett DW, Bedford JM (eds). Urban and Schwarzenberg. Baltimore-Munisch. pp 157–168, 1979.Google Scholar
  39. 39.
    Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH: Structure and function of an acetylcholine receptor. Biophys J 37: 371–383, 1982.PubMedCrossRefGoogle Scholar
  40. 40.
    Enders G, Werb Z, Friend DS: Lectin binding to sperm zipper particles. J Cell Biol 91: 116a, 1981.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster 1984

Authors and Affiliations

  • Daniel S. Friend
    • 1
  1. 1.Department of PathologyUniversity of California School of MedicineSan FranciscoUSA

Personalised recommendations