Advertisement

Origin of the germ cell line

  • Edward. M. Eddy
Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 2)

Abstract

The definitive germ cell line usually is considered to begin with the appearance of primordial germ cells (PGCs). As we shall see, for a few selected examples, PGCs are identified first in the posterior blastoderm in certain insect embryos, in the floor of the blastocoel in anuran frogs, in the anterior extraembryonic endoderm in chicks and in the endoderm of the yolk sac in mammals. It is tempting to make the generalization from these findings that the germ cell line of diverse animals arises within the endoderm or its equivalent prior to organogenesis. However, PGCs usually are identified on the basis of morphological features. This criterion alone may be insufficient for defining the beginning of the germ cell line. Cells which do not particularly look like PGCs but which have the developmental potential of PGCs, or express gene products specific to PGCs, might be present at earlier times and at other sites during embryogenesis. If this were shown to be the case, one might argue that by these criteria such cells should be called PGCs.

Keywords

Germ Cell Mouse Embryo Primordial Germ Cell Germ Plasm Primitive Streak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beams HW, Kessel RG: The problem of germ cell determinants. In: International review of cytology. Bourne GH, Danielli JF (eds). New York, Academic Press, 1974, Vol. 39, pp 413–479.Google Scholar
  2. 2.
    Eddy EM: Germ plasm and the differentiation of the germ cell line. In: International review of cytology, Bourne GH, Danielli JF (eds). New York, Academic Press, 1975, Vol. 43, pp 229–280.Google Scholar
  3. 3.
    Nieuwkoop PD, Satasurya LA: Primordial germ cells in the chordates. Cambridge, Cambridge University Press, 1979.Google Scholar
  4. 4.
    McLaren A: Germ cells and soma: A new look at an old problem. New Haven, Yale University Press, 1981.Google Scholar
  5. 5.
    Eddy EM, Clark JM, Gong D, Fenderson BA: Origin and migration of primordial germ cells in mammals. Gamete Res 4: 333–362, 1981.CrossRefGoogle Scholar
  6. 6.
    Boveri T: Die Blastomerenkune von Ascaris megalocephala und die Theorie der Chromosomen-individualität. Arch Zellforsch 3: 181–286, 1909.Google Scholar
  7. 7.
    Laufer JS, Bazzicalupo P, Wood WB: Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell 19: 569–577, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Strome S, Wood WB: Cytoplasmic localization of germ cell markers during embryogenesis in C. elegans. J Cell Biol 91: 184a, 1981.Google Scholar
  9. 9.
    Krieg C, Cole T, Deppe U, Schierenberg E, Schmitt D, Yoder B, von Ehrenstein G: The cellular anatomy of embryos of the nematode Caenorhabditis elegans. Analysis and reconstruction of serial section electron micrographs. Develop Biol 65: 193–215, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Laufer JS, von Ehrenstein G: Nematode development after removal of egg cytoplasm: Absence of localized unbound determinants. Science 211: 402–405, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Huettner AF: The origin of germ cells in Drosophila melanogaster. J Morphol 37: 385–424, 1923.CrossRefGoogle Scholar
  12. 12.
    Mahowald AP, Allis CD, Karrer KM, Underwood EM, Waring GL: Germ plasm and pole cells in Drosophila. In: Determinants of spatial organization, 37th Symposium of Society for Developmental Biology. Subtelny S, Koningsberg IR (eds), New York, Academic Press, 1979, pp 127–146.Google Scholar
  13. 13.
    Underwood EM, Caulton JH, Allis CD, Mahowald AP: Develop¬mental fate of pole cells in Drosophila melanogaster. Develop Biol 77: 303–314, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Hegner RW: The germ cell cycle in animals, New York, Macmillan Co., 1914.Google Scholar
  15. 15.
    Mahowald A: Polar granules in Drosophila. III. The continuity of polar granules during the life cycle in Drosophila. J Exp Zool 176: 329–344, 1971.PubMedCrossRefGoogle Scholar
  16. 16.
    Hegner RW: The effects of removing the germ-cell determinants from the eggs of some Chrysomelid beetles. Biol Bull 16: 19–26, 1908.CrossRefGoogle Scholar
  17. 17.
    Geigy R: Action de l’ultra-violet sur le pole germinale dans l’oeuf de Drosophila melanogaster. Rev Suisse Zool 38: 187–288, 1931.Google Scholar
  18. 18.
    Hathaway DS, Selman GG: Certain aspects of cell lineage and morphogenesis studied in embryos of Drosophila melanogaster with an ultra-violet microbeam. J Embryol Exp Morphol 9: 310–325, 1961.PubMedGoogle Scholar
  19. 19.
    Geyer-Duszynska I: Experimental research on chromosome eliminaination in Cecidomyidae (Diptera). J Exp Zool 141: 391–447, 1959.PubMedCrossRefGoogle Scholar
  20. 20.
    Okada M, Kleinman I A, Schneiderman HA: Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Develop Biol 37: 43–54, 1974.PubMedCrossRefGoogle Scholar
  21. 21.
    Illmensee K, Mahowald AP: Transplantation of posterior polar plasma in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Nat Acad Sci USA 71: 1016–1020, 1974.PubMedCrossRefGoogle Scholar
  22. 22.
    Waring GM, Allis CD, Mahowald AP: Isolation of polar granules and the identification of polar granule-specific protein. Develop Biol 66: 197–206, 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Bounoure L: L’Origin des cellules reproductrices et la problème de la lignée germinale, 1939 Paris, Gauthier-Villars.Google Scholar
  24. 24.
    Smith LD, Williams MA: Germinal plasm and determination of the primordial germ cells. In: The developmental biology of reproduction. 33rd Symposium of the Society for Developmental Biology. Markert CL, Papaconstantinou J (eds), New York, Academic Press, 1975, pp 3–24.Google Scholar
  25. 25.
    Mahowald AP, Hennen S: Ultrastructure of the ‘germ plasm’ in eggs and embryos of Rana pipiens. Develop Biol 24: 37–53, 1971.PubMedCrossRefGoogle Scholar
  26. 26.
    Librera E: Effects on gonad differentiation of the removal of vegetal plasm in eggs and embryos of Discoglossus pictus. Acta Embryol Exp Morphol 7: 217–223, 1964.Google Scholar
  27. 27.
    Gipouloux JD: Effets de l’extrusion totale ou partielle du cytoplasme germinal au cours des premiers stades de la segmentatiuon sur la fertilité des larves d’Amphibiens Anoures. C R Acad Sci, Paris (Serie D) 273: 2627–2629, 1971.Google Scholar
  28. 28.
    Tanabe K, Kotani M: Relationship between the amount of the ‘germinal plasm’ and the number of primordial germ cells in Xenopus laevis. J Embryol Exp Morphol 31: 89–98, 1974.PubMedGoogle Scholar
  29. 29.
    Bounoure L: Le sort de la lignée germinale chez la Grenoville rousse après l’action des rayons ultra-violet sur le pôb inferior de l’oeuf. C R Acad Sci Paris 204: 1837–1839, 1937.Google Scholar
  30. 30.
    Smith LD: The role of a ‘germinal plasm’ in the formation of primordial germ cells in Rana pipiens. Develop Biol 14: 330–347, 1966.PubMedCrossRefGoogle Scholar
  31. 31.
    Blackler AW: The integrity of the reproductive cell line in the amphibia. In: Current topics in developmental biology. Moscona AA, Monroy A (eds), New York, Academic Press, Vol. 5, 1970, pp 71–87.Google Scholar
  32. 32.
    Ikenishi K, Nieuwkoop PD: Location and ultrastructure of primordial germ cells (PGCs) in Ambystoma mexicanum. Develop. Growth Differ 20: 1–9, 1978.CrossRefGoogle Scholar
  33. 33.
    Abramowicz H: Die Entwicklung der Gonadenanlage und Entstehung der Gonocyten bei Triton taeniatus (Schneid.). Morphol Jahrb 47: 593–644, 1913.Google Scholar
  34. 34.
    Takamoto K: The development of entoderm free embryo. J Inst Polytech Osaka City Univ Ser D 4: 51–60, 1953.Google Scholar
  35. 35.
    Blackler AW: Embryonic sex cell in amphibia. In: Advances in reproductive physiology. McLaren A (ed), London, Logos Press, pp 9–28, 1966.Google Scholar
  36. 36.
    Swift CH: Origin and early history of the primordial germ-cells in the chick. Am J Anat 15: 483–516, 1914.CrossRefGoogle Scholar
  37. 37.
    Reynaud G: Transfert de cellules germinales primordiales de dindon a l’embryon de poulet por injection intravesculaire. J Embryol Exp Morphol 21: 485–507, 1969.PubMedGoogle Scholar
  38. 38.
    Meyer DB: Application of the periodic acid-Schiff technique to whole chick embryos. Stain Technol 35: 83–89, 1960.Google Scholar
  39. 39.
    Fujimoto T, Ukeshima A, Kiyofuji R: The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat Rec 185: 139–154, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Clawson RC, Domm LV: Origin and early migration of primordial germ cells in the chick: A study of the stages definitive primitive streak through 8 somites. Am J Anat 125: 87–112, 1969.PubMedCrossRefGoogle Scholar
  41. 41.
    Simon D: La lignee germinale des oiseaux et la migration des gonocytes primaires. In: L’Origine de la lignée germinale chez les vertébrés et chez quel ques groupes d’invertèbres. Wolff E (ed), Paris, Germann, 1964, pp 237–262.Google Scholar
  42. 42.
    Dubois R: Localisation et migration des cellules germinales du blastoderme non incubé de poulet d’apprès les résultats de culture in vitro. Arch Anat Microsc Morphol Exp 56: 245–264, 1967.PubMedGoogle Scholar
  43. 43.
    Fargeix N: Les cellules germinales du Canard chez des embryous normaux et des embryous de régulation. Etude des jeaunes stades au développment. J Embryol Exp Morphol 22: 477–503, 1969.PubMedGoogle Scholar
  44. 44.
    Eyal-Giladi H, Kochav S: From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. Develop Biol 49: 321–337, 1976.PubMedCrossRefGoogle Scholar
  45. 45.
    Everett, NB: The present status of the germ cell problem in vertebrates. Biol Rev 20: 45–55, 1945.CrossRefGoogle Scholar
  46. 46.
    McKay DG, Hertig AT, Adams EC, Danziger S: Histochemical observations on the germ cells of human embryos. Anat Rec 117: 201–219, 1953.PubMedCrossRefGoogle Scholar
  47. 47.
    Chiquoine AD: The identification, origin and migration of the primordial germ cells in the mouse embryo. Anat Rec 118: 1315–146, 1954.CrossRefGoogle Scholar
  48. 48.
    Mintz B, Russell ES: Gene induced embryological modifications of primordial germ cells in the mouse. J Exp Zool 134: 207–237, 1957.PubMedCrossRefGoogle Scholar
  49. 49.
    Ozdzenski W: Observations on the origin of primordial germ cells in the mouse. Zool Pol 17: 367–379, 1967.Google Scholar
  50. 50.
    Zamboni L, Merchant H: The fine morphology of mouse primordial germ cells in extragonadal locations. Am J Anat 137: 299–336, 1973.PubMedCrossRefGoogle Scholar
  51. 51.
    Spiegelman M, Bennett D: A light and electron-microscopic study of primordial germ cells in the early mouse embryo. J Embryol Exp Morphol 30: 97–118, 1973.PubMedGoogle Scholar
  52. 52.
    Clark JM, Eddy EM: Fine structural observations on the origin and association of primordial germ cells of the mouse. Develop Biol 47: 136–155, 1975.PubMedCrossRefGoogle Scholar
  53. 53.
    Everett NB: Observational and experimental evidences relating to the origin and differentiation of the definitive germ cells in mice. J Exp Zool 92: 49–91, 1943.CrossRefGoogle Scholar
  54. 54.
    Andre J, Rouiller C: L’ultrastructure de la membrane nucleaire des ovocytes de l’araignée (Tegenaria domestica Clark). In: Proc. European conf. electron microscopy, Stockholm. Sjostrand FS, Rhodin J (eds), New York, Academic press, 1956, pp 162–164.Google Scholar
  55. 55.
    Eddy EM: Fine structural observations on the form and distribution of nuage in germ cells of the rat. Anat Rec 178: 731–758, 1974.PubMedCrossRefGoogle Scholar
  56. 56.
    Eddy EM, Clark JM: Electron microscopic study of migrating primordial germ cells in the rat. In: Electron microscopic concepts of secretion. Ultrastructure of endocrine and reproductive organs. Hess M (ed), New York Wiley and Sons, 1975, pp 151–167.Google Scholar
  57. 57.
    Weakley BS: Granular cytoplasmic bodies in oocytes of the golden hamster during the post-natal period. Z Zellforsch 101: 394–400, 1969.PubMedCrossRefGoogle Scholar
  58. 58.
    Enders AC: The fine structure of the blastocyst. In: Biology of the blastocyst. Blandau RJ (ed), 1971, Chicago, University of Chicago Press, pp 71–94.Google Scholar
  59. 59.
    Nadijcka M, Hillman N: Ultrastructural studies of the mouse blastocyst substages. J Embryol Exp Morphol 32: 675–695, 1974.PubMedGoogle Scholar
  60. 60.
    Motta P, Van Blerkom J: Présence d’un matériel caractéristique granulaire dans le cytoplasma de l’ovocyte et dans les premières stages de la différenciation des cellules embryonnaires. Bull. Assoc Anat 58: 947–953, 1974.Google Scholar
  61. 61.
    Tarkowski AK: Experiments on the development of isolated blastomeres of mouse eggs. Nature (Lond) 184: 1286–1287, 1959.CrossRefGoogle Scholar
  62. 62.
    Kelly SJ: Studies of the potency of the early cleavage blastomeres of the mouse. In: The early development of mammals. Balls M, Wild AE (eds), Cambridge, Cambridge University Press, 1975, pp 97–105.Google Scholar
  63. 63.
    Kelly SJ: Investigations into the degree of cell mixing that occurs between the 8-cell stage and the blastocyst stage of mouse development. J Exp Zool 207: 121–130, 1979.PubMedCrossRefGoogle Scholar
  64. 64.
    Mintz B: Experimental genetic mosaicism in the mouse. In: Pre-implantation stages of pregnancy. Wolstenholme GEW, O’Connor M (eds) London, Churchill, 1965, pp 194–207.Google Scholar
  65. 65.
    Tarkowski AK, Wroblewska J: Development of blastomeres of mouse eggs isolated at the 4-and 8-cell stage. J Embryol Exp Morphol 18: 155–180, 1967.PubMedGoogle Scholar
  66. 66.
    Barlow PW, Owen D, Graham CF: DNA synthesis in the pre-implantation mouse embryo. J Embryol Exp Morphol 27: 431–445, 1972.PubMedGoogle Scholar
  67. 67.
    Gardner RL: Analysis of determination and differentiation in the mammalian embryo using intra-and inter-species chimeras. In: The developmental biology of reproduction. 33rd Symposium of the Society for Developmental Biology, Markert CL (ed), New York, Academic Press, 1975, pp 207–236.Google Scholar
  68. 68.
    Hillman N, Sherman MI, Graham CF: The effect of spatial arrangement on cell determination during mouse development. J Embryol Exp Morphol 28: 263–278, 1972.PubMedGoogle Scholar
  69. 69.
    Gardner RL, Rossant J: Determination during embryogenesis. In: Embryogenesis in mammals. Ciba Foundation Symposium 40 ( New Series). Amsterdam, Elsevier, 1976, pp. 5–18.Google Scholar
  70. 70.
    Gardner RL: Microsurgical approaches to the study of early mammalian development. In: Birth defects and fetal development: Endocrine and metabolic factors. Moghissi KS (ed), Springfield, 111. Thomas, 1974, pp 212–233.Google Scholar
  71. 71.
    Garner RL, Papaionannou VE: Differentiation in the trophectoderm and inner cell mass. In: The early development of mammals. Balls M, Wild AE (eds), Cambridge, Cambridge University Press, 1975, pp 107–132.Google Scholar
  72. 72.
    Papaioannou VE, Rossant J, Gardner RL: Stem cell in early mammalian development. In: Stem cells and tissue homeostasis. 2nd Symposium of British Soc. for Cell Biology. Lord BI, Patten CS, Cole RJ (eds), London, Cambridge University Press, 1978, pp 49–69.Google Scholar
  73. 73.
    Snow MHL: Autonomous development of parts isolated from primitive-streak stage mouse embryos. Is development clonal? J Embryol Exp Morphol 65 (Suppl): 269–287, 1981.PubMedGoogle Scholar
  74. 74.
    Stevens LC: Origin of testicular teratomas from primordial germ cells in mice. J Nat Cancer Inst 37: 859–861, 1967.Google Scholar
  75. 75.
    Stevens LC: The development of transplantable teratocarcinomas from intratesticular grafts of pre-and post-implantation embryos. Develop Biol 21: 364–382, 1970.PubMedCrossRefGoogle Scholar
  76. 76.
    Stevens LC, Varnum DS: The development of teratomas from parthenogenetically activated ovarian mouse eggs. Develop Biol 37: 369–380, 1974.PubMedCrossRefGoogle Scholar
  77. 77.
    Martin GR: Advantages and limitations of teratocarcinoma stem cells as models of development. In: Development in mammals. Johnson MH (ed), New York, North Holland Publishing Co, 1978, Vol III, pp 225–265.Google Scholar
  78. 78.
    Mintz B, Cronmiller C, Custer RP: Somatic cell origin of teratocarcinomas. Proc Nat Acad Sci USA 75: 2834–2838, 1978.PubMedCrossRefGoogle Scholar
  79. 79.
    Kleinsmith LJ, Pierce CB: Multipotentiality of single embryonal carcinoma cells. Cancer Res 24: 1544–1552, 1964.PubMedGoogle Scholar
  80. 80.
    Brinster RL: The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140: 1049–1056, 1974.PubMedCrossRefGoogle Scholar
  81. 81.
    Papaioannou VE, McBurney MW, Gardner RL, Evans MJ: Fate of teratocarcinoma cells injected into early mouse embryos. Nature (Lond) 258: 70–73, 1975.CrossRefGoogle Scholar
  82. 82.
    Mintz B, Illmensee K: Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Nat Acad Sci USA 72: 3585–3589, 1975.PubMedCrossRefGoogle Scholar
  83. 83.
    Illmensee K, Mintz B: Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Nat Acad Sci USA 73: 549–553, 1976.PubMedCrossRefGoogle Scholar
  84. 84.
    Stewart TA, Mintz B: Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proc Nat Acad Sci USA 78: 6314–6318, 1981.PubMedCrossRefGoogle Scholar
  85. 85.
    Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Nat Acad Sci USA 78: 7634–7638, 1981.PubMedCrossRefGoogle Scholar
  86. 86.
    Evans MJ, Kaufman MH: Establishment in culture of pluripotent cells from mouse embryos. Nature 292: 154–156, 1981.PubMedCrossRefGoogle Scholar
  87. 87.
    Diwan SB, Stevens LC: Development of teratomas from the ectoderm of mouse egg cylinders. J Nat Cancer Inst 57: 937–939, 1976.PubMedGoogle Scholar
  88. 88.
    Edidin M, Patthey HL, McGuire EJ, Sheffield WD: An antiserum to ‘embryoid body’ tumor cells that reacts with normal mouse embryos. In: Conference and workshop on embryonic and fetal antigens in cancer. Anderson NG, Coggin JH, Jr. (eds), Oak Ridge, Oak Ridge National Laboratory, 1071, pp 239–248.Google Scholar
  89. 89.
    Jacob F: Mouse teratocarcinoma and embryonic antigens. Immunological Rev 33: 3–32, 1977.CrossRefGoogle Scholar
  90. 90.
    Gachelin G, Fellous M, Guenet J-L, Jacob F: Developmental expression of an early embryonic antigen common to mouse spermatozoa and cleavage embryos, and to human spermatozoa: Its expression during spermatogenesis. Develop Biol 50: 310–320, 1976.PubMedCrossRefGoogle Scholar
  91. 91.
    Evans MJ, Lovell-Badge RH, Stern PL, Stinnakre MG: Cell lineages of the mouse embryo and embryonal carcinoma cells: Forssman antigen distribution and patterns of protein synthesis. In: Cell lineage, stem cells and differentiation, INSERM Symposium No. 10. Le Douarin N (ed), Amsterdam, Elsevier/North Holland Biomedical Press, 1979, pp 115–129.Google Scholar
  92. 92.
    Martin GR, Smith S, Epstein CJ: Protein synthetic patterns in terato-carcinoma stem cells and mouse embryos at early stages of development. Develop Biol 66: 8–16, 1978.PubMedCrossRefGoogle Scholar
  93. 93.
    Dewey MJ, Filler R, Mintz B: Protein patterns of developmentally totipotent mouse teratocarcinoma cells and normal early embryo cells. Develop Biol 65: 171–182, 1978.PubMedCrossRefGoogle Scholar
  94. 94.
    Failly-Crepin C, Martin GR: Protein synthesis and differentiation in a clonal line of teratocarcinoma cells and in preimplantation mouse embryo. Cell Diff 8: 61–73, 1979.CrossRefGoogle Scholar
  95. 95.
    Fox N, Damjanov I, Martinex-Hernandez A, Knowles BB, Solter D; Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissue. Develop Biol 83: 391–398, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster 1984

Authors and Affiliations

  • Edward. M. Eddy
    • 1
  1. 1.Department of Biological StructureUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations