Etiopathogenesis and Differential Diagnosis of Acute Renal Failure

  • Melinda McVicar
Part of the Developments in Nephrology book series (DINE, volume 7)


Attention was first focused on acute renal failure in 1941 when Bywaters and Beall (I) noted that severe crush injuries which did not involve the abdominal cavity were frequently associated with decreased urine output and decreased renal function. Patients studied at autopsy had intratubular casts containing tubular epithelium and tubular necrosis as prominent findings. The terms lower nephron nephrosis and acute tubular necrosis were applied to this kind of injury. Since then active research in this area, particularly in experimental models, has led some clarification of the mechanisms involved in acute renal failure.


Renal Artery Acute Renal Failure Renal Blood Flow Uranyl Nitrate Posterior Urethral Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bywaters, EGL., and Beall, D.: Crush injuries with impairment of renal function. Brit. Med. 1: 427, 1941.CrossRefGoogle Scholar
  2. 2.
    Goormaghtigh, H.: Vascular and circulatory changes in renal cortex in the anuric crush–syndrome. Proc. Soc. Exptl. Biol. Med. 59: 303, 1945.Google Scholar
  3. 3.
    Hayes, J.M., O’Connell, S.M.B., Siegel, L., Pryce, F.H., and Schreiner, G.E.: Renal renin and renin release in acute renal failure in the rat. Federation Proc. 27: 629, 1968.Google Scholar
  4. 4.
    Humes, H.D.: Cellular pathophysiology of acute renal failure, Introductory Lecture. Am. Soc. of Nephrol., 15th Annual Meeting.Google Scholar
  5. 5.
    Sastrasinh, M., Weinberg, J.M., and Humes, H.D.: The degree of gentamicin (G)–induced acute renal failure in various states of Na balance is due to structural rather than functional renal abnormalities. Kidney Int. 23: 207, 1983.Google Scholar
  6. 6.
    Johnston, P.A., Rennke, H., and Levinsky, N.G.: Effect of ischemia on proximal tubule fluid and glucose reabsorption. Kidney Int. 23: 205, 1983.Google Scholar
  7. 7.
    Weinberg, J.M., Harding, P.G. and Humes, H.D.: Saline (NS) loading protects against tubular cell injury in H CL? (Hg) nephrotoxicity. Kidney Int. 21: 226, 1982.Google Scholar
  8. 8.
    Elliott, W.C., Gilbert, D.N., DeFehr, J., Bennett, W.M., and McCarron, D.A.: Protection from experimental gentamicin (G) toxicity by dietary calcium (ca) loading. Kidney Int. 21: 216, 1982.Google Scholar
  9. 9.
    Burke, T.J., Arnold, P.E., and Schrier, R.W.: Impairment of Mito¬chondrial (Mito) respiration (MR) and calcium (Ca) kinetics in ischemic acute renal failure (ARF): Prevention by impermeant solute (IS) and Ca membrane blocker. Kidney Int. 21: 215, 1982.Google Scholar
  10. 10.
    Teschan, P.E. and Lawson, N.L.: Studies in acute renal failure. Prevention by osmotic diuresis and observations on the effect of plasma and extracellular volume expansion. Nephron 3: 1, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Gouvea, W., Kelley, J., Alpert, H., Pardo, v., and Vaamonde, C.A.: Enhanced solute excretion fails to protect against gentamicin acute renal failure (G–ARF) in the phlorizin treated rat. Kidney Int. 21: 217, 1982.Google Scholar
  12. 12.
    Shor, N., Ichiawa, I., Rennke, H.G., Troy, J.L., and Brenner, B.M.: Role of angiotensin II (A II) in gentamicin (G) nephrotoxicity. Clin. Res. 28: 461, 1980.Google Scholar
  13. 13.
    Sinsteden, T.D., O’Neil, T.J., and Stein, J.H.: Studies on the protective effect of bradykinin (BR), mannitol (M) and furosemide (F) in norepinephrine (NE) induced acute renal failure (ARF) in the dog. Kidney Int. 21: 224, 1982.Google Scholar
  14. 14.
    Klotman, P.E., Boatman, J., Baker, J.D., and Yarger, W.E.: Captopril stimulates thromboxane production and exacerbates nephrotoxic acute renal failure. Kidney Int. 23: 205, 1983.Google Scholar
  15. 15.
    Arendhorst, W.J., Finn, W.F., and Gottschalk, C.W.: Pathogenesis of acute renal failure following renal ischemia in the rat. Circulation Res. 37: 558, 1975.Google Scholar
  16. 16.
    Daugharty, T.M., Ueki, I.F., Mercer, T.F., and Brenner, B.M.: Dynamics of glomerular ultrafiltration in the rat. Response to ischemic injury. J. Clin. Invest. 53: 105, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Fung, H.M.: Norepinephrine–induced unilateral acute renal failure. (Ph.D. Thesis). 1972. Winnepeg, Canada: University of Manitoba.Google Scholar
  18. 18.
    Mauk, R.H., Patak, R.V., Fadem, S.Z., Lifschitz, M.D., and Stein, J.H.: Effect of prostaglandin E administration in a nephrotic and a vaso–constrictor model of acute renal failure. Kidney Int. 12: 122, 1977.Google Scholar
  19. 19.
    Cox, J.W., Baehler, R.W., Sharma, H., O’Dorisio, T., Osgood, R.W., Stein, J.H., and Ferris, T.F.: Studies on. the mechanisms of oliguria in a model of unilateral acute renal failure. J. Clin. Invest. 53: 1546, 1974.PubMedCrossRefGoogle Scholar
  20. 20.
    Fried, T., Hishida, A., and Stein, J.H.: Studies on the protective effect of chronic uninephrectomy in renal ischemia in the rat. Kidney Int. 23: 203, 1983.Google Scholar
  21. 21.
    Tanner, G.A., and Sophasan, S.: Kidney pressures after temporary renal artery occlusion in the rat. Am. J. Physiol. 230: 1173, 1976.PubMedGoogle Scholar
  22. 22.
    Hornych, H., and Richet, G.: Dissociated effect of sodium intake on glomerular and pressure responses to angiotensin. Kidney Int. 11: 28, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Sraer, J.D., Ardaillou, R., and Mimoune, O.: Evidence for renal glomerular receptors for angiotensin II. Kidney Int. 6: 241, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Wilkes, B.M., Caldicott, J.H., Schulman, G., and Hollenberg, N.K.: Loss of the glomerular contractile response to angiotensin in rats following myohemoglobinuric acute renal failure. Circ. Res. 49: 1190, 1981.PubMedGoogle Scholar
  25. 25.
    Bellucci, A. and Wilkes, B.M.: Glomerular angiotensin (A II) receptors are normal in acute renal failure. Kidney Int. 21: 214, 1982.Google Scholar
  26. 26.
    Smith, C.R., Maxwell, R.R., Edwards, C.Q., Rogers, J.F., Leitman, P.S.: Nephrotoxicity induced by gentamicin and amikacin. Johns Hopkins Med. J. 142: 85, 1978.PubMedGoogle Scholar
  27. 27.
    Houghton, D.C., Campbell–Boswell, M.V., Bennett, W.M., Portor, A.J. and Brooks, R.E.: Myeloid bodies in the renal tubules of humans: Relationship to gentamicin therapy. Clin. Nephrol. 10: 140, 1978.Google Scholar
  28. 28.
    Kosek J.D., Mazze, R.I. and Cousins, M.J.: Nephrotoxicity of gentamicin. Lab. Invest. 30: 48, 1974.PubMedGoogle Scholar
  29. 29.
    Fabre, J., Rudhart, M., Blanchard, P. and Regamey, C.: Persistence of sisomicin and gentamicin in renal cortex and medulla compared with other organs and serum of rats. Kidney Int. 10: 444, 1976.PubMedCrossRefGoogle Scholar
  30. 30.
    Wade, J.C., Petty, B.G., Conrad, G., Smith, C.R., Lipsky, J.J., and Ellner, J.: Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus an aminoglycoside. Lancet II 604: 1978.Google Scholar
  31. 31.
    Luft, F.C. and Kleit, S.A.: Renal parenchymal accumulation of aminoglycoside antibiotics in rats. J. Infect. Dis. 130: 656, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Alfthan, O., Renkonen, O.V. and Sivonen, A. Concentration of gentamicin in serum, urine and urogenital tissue in man. Acta Pathol. Microbiol. Scand. (B) (suppl. 241 ): 92, 1973.Google Scholar
  33. 33.
    Aubert-Tulkens, G., Van Hoof, F., Tulkens, P.: Gentamicin–induced lysosomal phospholipidoses in cultured rat fibroblasts. Lab. Invest. 40: 481, 1979.PubMedGoogle Scholar
  34. 34.
    Baylis, C.: The mechanisms of the decline in glomerular filtration rate in gentamicin induced acute renal failure in the rat. J. of Antimicrobial Chemotherapy. 6 (3): 381, 1980.CrossRefGoogle Scholar
  35. 35.
    Avasthi, P.S., Huser, J., and Evan, A.P.: Glomerular endothelial cells in gentamicin–induced acute renal failure in rats. Kidney Int. 16: 771, 1979.Google Scholar
  36. 36.
    Avasthi, P., Evan, A.P., and Hay, D.: Glomerular endothelial cells in uranyl nitrate–induced acute renal failure in rats. J. of Clin. Invest. 65: 121, 1980.CrossRefGoogle Scholar
  37. 37.
    Ishikawa, I. and Hollenberg, N.K.: Pharmacologic interruption of the renin–angiotensin system in myohemoglobinuric acute renal failure. Kidney Int., (suppl. 183 ), Oct. 1976.Google Scholar
  38. 38.
    Warshaw, B.L., Edelbrook, H.H., Ettenger, R.B., Malekzadeh, M.H., Pennis, A.J., Vittenbogaart, C.H., and Fine, R.N.: Progression to end–stage renal disease in children with obstructive uropathy. J. of Pediat. 100: 183, 1982.CrossRefGoogle Scholar
  39. 39.
    Atwell, J.D.: Posterior urethral valves in the British Isles: a multicenter B.A.P.S. review. J. Pediat. Surg. 18: 70, 1983.PubMedCrossRefGoogle Scholar
  40. 40.
    Cowan, R.H., Jakkola, A.F. and Arant, B.S.: Pathophysiologic evidence of gentamicin nephrotoxicity in neonatal puppies. Ped. Research 11: 1204, 1980.Google Scholar
  41. 41.
    Barratt, T.M. and Rigden, S.P.A.: In: Alan B. Gruskin and Michael E. Norman, eds. Pediatric Neph.rology–Proceedings of the Fifth International Pediatric Nephrology Symposium, 1980. Boston: Martinus Nijhoff Publishers 1980, pp. 278–96.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Melinda McVicar

There are no affiliations available

Personalised recommendations