Effects of Calcium Antagonistic Drugs on Various Heart Tissues, Including Blockade of the Slow Channels and Depression of Postdrive Hyperpolarization.

  • P. A. Molyvdas
  • N. Sperelakis
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)


The force of contraction of the heart muscle is regulated by the Ca++ ions that enter the myocardial cell during excitation (Fabiato & Fabiato, 1979). The Ca++ influx occurs through the voltage-dependent and time-dependent slow channels of the cell membrane, and can be inhibited by specific blockers. These inhibitors can be inorganic ions,like Mn++ and La+++, or organic compounds like verapamil, nifedipine, diltiazem, and bepridil (Kohlhardt et al., 1972; Shigenobu et al., 1974; Kohlhardt and Fleckenstein, 1977; Vogel et al., 1979; Sperelakis, 1981). These drugs are called calcium antagonists or “calcium entry blockers” because of their ability to block the slow inward current in myocardial cells and in vascular smooth muscle. Since some of these drugs, like verapamil, methoxy-verapamil (D600), and nifedipine also block the slow Na+ channels of young embryonic chick hearts, these drugs are more accurately described as “slow channel blockers” (Shigenobu et al., 1974; Lee & Tsien, 1983; Kojima & Sperelakis, 1983).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, H.F. (1982). Electrophysiology of the sinoatrial node. Physiological Reviews. 62, 505–530.PubMedGoogle Scholar
  2. Brown, H.F. and D. DiFrancesco (1980). Voltage clamp investigations of membrane currents underlying pacemaker activity in rabbit sinoatrial node. J. Physiol. Lond. 308, 331–335.PubMedCentralPubMedGoogle Scholar
  3. Endo, M. (1977). Calcium release from the sarcoplasmic reticulum. Physiol. Reviews, 57, 71–108.Google Scholar
  4. Fabiato, A. and F. Fabiato (1979). Calcium and cardiac excitation-contraction coupling. Ann. Rev. Physiol. 41, 473–484.CrossRefGoogle Scholar
  5. Grant, A.O. and H.C. Strauss (1982). Intracellular potassium activity in rabbit sinoatrial node. Circ. Res. 51, 271–279.PubMedCrossRefGoogle Scholar
  6. Harder, D. and N. Sperelakis (1978). Membrane electrical properties of arterial vascular smooth muscle cells from guinea pig mesenteric artery. Pflugers Arch. Eur. J. Physiol. 378, 111–119.Google Scholar
  7. Harder, D. and N. Sperelakis (1981). Bepridil blockade of Ca2+ dependent action potentials in vascular smooth muscle of dog coronary artery. J. Cardiovasc. Pharmacol. 3, 906–914.PubMedCrossRefGoogle Scholar
  8. Hescheler, J., D. Pelzer, G. Trube, and W. Trautwein (1982). Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch. 393, 287–291.PubMedCrossRefGoogle Scholar
  9. Isenberg, G. (1977). Cardiac Purkinje fibers: Ca, controls the steady state potassium conductance. Pflugers Arch. 371, 71–76.PubMedCrossRefGoogle Scholar
  10. Kanaya, S., P. Arlock, B.G. Katzung, L.M. Hondeghem (1983). Diltazem and verapamil preferentially block inactivated cardiac calcium channels. J. of Mol. and Cell. Cardiol. 15, 145–148.CrossRefGoogle Scholar
  11. Kass, R.S. and R.W. Tsien (1975). Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. of Gen. Physiol., 66, 169–192.CrossRefGoogle Scholar
  12. Kohlhardt, M., B. Bauer, H. Krause and A. Fleckenstein (1972). Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pflugers Arch. Eur. J. Physiol. 335, 309–322.CrossRefGoogle Scholar
  13. Kohlhardt, M. and A. Fleckenstein (1977). Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn Schmiedbergs Arch. Pharmacol. 298, 267–272.CrossRefGoogle Scholar
  14. Kojima, M. and N. Sperelakis (1983). Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic hearts. Eur. J. Pharmacol., 94, 9–18.PubMedCrossRefGoogle Scholar
  15. Lee, K.S. and R.W. Tsien (1982). Reversal of current through calcium channels in dialysed single heart cells. Nature, 297, 498–501.PubMedCrossRefGoogle Scholar
  16. Lee, K.S. and R.W. Tsien (1983). Mechanism of calcium channel blockade by verapamil, D600, diltazem and nitrendipine in single dialysed heart cells. Nature 302, 790–794.PubMedCrossRefGoogle Scholar
  17. Li, T. and N. Sperelakis (1983). Calcium antagonist blockade of slow action potentials in cultured chick heart cells. Can. J. Physiol, and Pharm. 61, 957–966.CrossRefGoogle Scholar
  18. Molyvdas, P.A. and N. Sperelakis (1983a). Comparison of the effects of several calcium antagonistic drugs (slow channel blockers) on the electrical and mechanical activities of guinea pig papillary muscle. J. Cardiovasc. Pharmacol. 5, 162–169.PubMedCrossRefGoogle Scholar
  19. Molyvdas, P.A. and N. Sperelakis (1983b). Comparison of the effects of several calcium antagonistic drugs on the electrical activity of guinea pig Purkinje fibers. Eur. J. Pharmacol. 88, 205–214.PubMedCrossRefGoogle Scholar
  20. Mras, S. and N. Sperelakis (1981). Bepridil (CERM-1978) blockade of action potentials in cultured rat aortic smooth muscle cells. European J. Pharmacol. 71, 13–19.CrossRefGoogle Scholar
  21. Nabata, H. (1977). Effects of calcium-antagonistic coronary vasodilators on myocardial contractility and membrane potentials. Jap. J. Pharmacol., 27, 239–94.PubMedCrossRefGoogle Scholar
  22. Noma, A. and H. Iriwawa (1976). The time and voltage dependent potassium current in the rabbit sinoatrial node cell. Pflugers Arch. 366, 251–258.PubMedCrossRefGoogle Scholar
  23. Osterrieder, W., Q.F. Yang and W. Trautwein (1982). Effects of barium on the membrane currents of the rabbit S-A node. Pflugers Arch. 394, 78–84.PubMedCrossRefGoogle Scholar
  24. Pang, D.C. and N. Sperelakis (1982). Differential actions of calcium antagonists on calcium binding to cardiac sarcolemma. Eur. J. of Pharmacol. 81, 403–409.CrossRefGoogle Scholar
  25. Pang, D.C. and N. Sperelakis (1983a). Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles, chick embryonic ventricular muscle and rabbit papillary muscle. Eur. J. Pharmacol. 87, 199–207.PubMedCrossRefGoogle Scholar
  26. Pang, D.C. and N. Sperelakis (1983b). Uptake of [3H] nitrendipine into cardiac and smooth muscle. Biochem. Pharmacol. 32, 1660–1663.PubMedCrossRefGoogle Scholar
  27. Pelleg, A., S. Vogel, L. Belardinelli, and N. Sperelakis (1980). Overdrive suppression of automaticity in cultured chick myocardial cells. Am. J. Physiol./Heart & Circulatory Physiol., 238, H24–H30.Google Scholar
  28. Pelzer, D., W. Trautwein, and T.F. McDonald (1982). Calcium channel block and recovery from block in mammalian ventricular muscle treated with organic channel inhibitors. Pflugers Arch. 394, 97–105.PubMedCrossRefGoogle Scholar
  29. Reuter, H. and H. Scholz (1977). A study of the ion selectivity and the kinetic properties of the calcium-dependent slow inward current in mammalian cardiac muscle. J. Physiol. 264, 17–47.PubMedCentralPubMedGoogle Scholar
  30. Schramm, M., G. Thomas, R. Towart and G. Franckowiak (1983). Novel of hydropyridines with positive inotropic action through activation of Ca2+ channels. Nature, 303, 535–537.PubMedCrossRefGoogle Scholar
  31. Seyama, I. (1979). Characteristics of the anion channel in the Sinoatrial nodal cell of the rabbit. J. Physiol. ( Lond ) 294, 447–460.PubMedCentralPubMedGoogle Scholar
  32. Shigenobu, K., J.A. Schneider, and N. Sperelakis (1974). Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells. J. Pharmacol. Exp. Therap. 190, 280–288.Google Scholar
  33. Sperelakis, N. (1979). Origin of the cardiac resting potential, In: Handbook of Physiology. The Cardiovascular System, Vol 1: (RM Berne and N Sperelakis, eds.), Am. Physiol. Soc., Chapt. 6, p. 187–267.Google Scholar
  34. Sperelakis, N. (1981). Effects of cardiotoxic agents on the electrical properties of myocardial cells. In: Cardiac Toxicology, Vol. 1 ( T. Balazs, ed.) CRC Press, Boca Raton, 39–108.Google Scholar
  35. Sperelakis, N. and J.A. Schneider (1976). A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am. J. Cardiol., 37, 1079–1085.PubMedCrossRefGoogle Scholar
  36. Vassalle, M. (1970). Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. 27, 361–377.PubMedCrossRefGoogle Scholar
  37. Vogel, S., R. Crampton and N. Sperelakis (1979). Blockade of myocardial slow channels by bepridil (CERM–1978). J. Pharmacol. Exp. Ther. 210, 378–385.PubMedGoogle Scholar
  38. Wiggins, T.R. and P.F. Cranefield (1976). Two levels of resting potential in canine Purkinje fibers exposed to sodium free solutions, Circ. Res., 39, 466–474.PubMedCrossRefGoogle Scholar
  39. Yanagihara, K., and H. Irisawa (1980). Potassium current during the pacemaker depolarization in rabbit sinoatrial node cel. Pflugers Arch. 388, 255–260.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • P. A. Molyvdas
    • 1
  • N. Sperelakis
    • 1
  1. 1.Department of PhysiologyUniversity of Cincinnati, College of MedicineCincinnatiUSA

Personalised recommendations