High Rate Deformation in the Field of a Crack

  • R. Hoff
  • C. A. Rubin
  • G. T. Hahn
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 29)


As part of a study of the crack arrest capabilities of tough steels[1], efforts are underway to simulate rapid crack extension and arrest in elastic-plastic finite element models. As a first step, stationary cracks in compact tension specimens have been modelled and the effects of loading rate, strain rate sensitivity and inertia on JI have been examined. The aim of this work is to examine those features of the plastic zone influential in determining the toughness, namely, the size of the process zone, and the crack tip opening displacement.


Plastic Strain Flow Stress Plastic Zone Process Zone Plastic Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. T. Hahn, and C. A. Rubin, Analysis of Crack Arrest Toughness Measurement Procedures for Ship Hull Design, Vanderbilt University Proposal to Office of Naval Research, Nashville (1982).Google Scholar
  2. 2.
    N. Levy, P. V. Marcal, W. J. Ostergren, and J. R. Rice, Small Scale Yielding Near a Crack in Plane Strain: A Finite Element Analysis, Int. J. of Frac. Mech., 7:143 (1971).Google Scholar
  3. 3.
    J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. of AppL. tech., 35:379 (1968).CrossRefGoogle Scholar
  4. 4.
    P. C. Paris, Fracture Mechanics in the Elastic-Plastic Regimes in: “Flaw Growth and Fracture, ASTM STP 631”, American Society for Testing and Materials, Philadelphia (1977).Google Scholar
  5. 5.
    C. F. Shih, W. R. Andrews, M. D. German, R. H. VanStone and J. P. D. Wilkinson, “Methodology for Plastic Fracture, EPRI Contract RP 601–2, Combined Seventh and Eighth Quarterly Report”, General Electric, Schenectady, N.Y. (1978).Google Scholar
  6. 6.
    W. Ramberg and W. R. Osgood, NACA TN 902 (1943).Google Scholar
  7. 7.
    J. W. Hutchinson, Singular Behaviour at the End of a Tensile Crack in a Hardening Material, J. tech. Phys. Solids, 16:13 (1968).ADSMATHCrossRefGoogle Scholar
  8. 8.
    J. R. Rice and G. F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. tech. Phys. Solids, 16:1 (1968).ADSMATHCrossRefGoogle Scholar
  9. 9.
    C. F. Shih, “Elastic Plastic Analysis of Combined Mbde Crack Problems”, Ph.D. Thesis, Harvard University (1973).Google Scholar
  10. 10.
    V. Kumar, M. D. German, and C. F. Shih, “An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI NP-1931”, Electric Power Research Institute, Palo Alto, Ca. (1981).Google Scholar
  11. 11.
    R. M. McMeeteeking, “Finite Deformation Analysis of Crack Tip Openings in Elastic-Plastic Materials and Implications for Fracture Initiation”, Brown University Report COO-3084/44, Providence, R.I. (1976).Google Scholar
  12. 12.
    W. L. Server, Static and Dynamic Fibrous Initiation Toughness Results for Nine Pressure Vessel Materials, in: “Elastic- Plastic Fracture, ASTM SIP 668”, American Society for Testing and Materials, Philadelphia (1979).Google Scholar
  13. 13.
    W. L. Server, W. Oldfield, and R. A. Wullaert, “Experimental and Statistical Requirements for Developing a Weil-Defined k IR Curve”, EPRI NP-372, Electric Power Research Institute (1977).Google Scholar
  14. 14.
    M. L. Wilson, R. H. Hawley, and J. Duffy, The Effect of Loading Rate and Temperature on Fracture Initiation in 1020 Hot- Rolled Steel, Eng. Frac. tech., 13:371 (1980).CrossRefGoogle Scholar
  15. 15.
    L. S. Costin, The Effect of Loading Rate and Temperature on the Initiation of Fracture in a Mid Rate-Sensitive Steel, J. Eng. tet. Tech., 101: 258 (1979).Google Scholar
  16. 16.
    J. Klepaczko, Application of the Split Hopkinson Pressure Bar to Fracture Dynamics, Inst. Phys. Conf., 47:201 (1979).Google Scholar
  17. 17.
    M. F. Kanninen, E. F. Rybicki, R. B. Stonesifer, D. Broek, A. R. Rosenfield, C. W. Marschall, and G. T. Hahn, Elastic-Plastic Fracture Mechanics for Two-Dimensional Stable Crack Growth and Instability Problems, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing And Materials, Philadelphia (1979).Google Scholar
  18. 18.
    C. F. Shih, H. G. deLorenzi, and W. R. Andrews, Studies on Crack Initiation and Stable Crack Growth, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).Google Scholar
  19. 19.
    H. G. deLorenzi, and C. F. Shih, Int. J. of Frac. tech., 13:507 (1977).Google Scholar
  20. 20.
    R. Hoff and T. P. Byrne, “Residual Stress Analysis - A Compari son of Finite Element Results with Closed-Form Solutions”, Ontario Hydro Research Div. Report 81–232-K, Toronto, Ont. (1981).Google Scholar
  21. 21.
    R. S. Barsoum, Int. J. Num. teth. Eng., 11:85 (1977).MATHCrossRefGoogle Scholar
  22. 22.
    E. P. Sorensen, A Numerical Investigation of Plane Strain Stable Crack Growth Under Small-Scale Yielding Conditions, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).Google Scholar
  23. 23.
    R. O. Ritchie, W. L. Server, and R. A. Wullaert, Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf Toughness in Nuclear Pressure Vessel Steels, Met. Trans. A, 10A:1557 (1979).CrossRefGoogle Scholar
  24. 24.
    L. E. Milvern, Experimental Studies of Strain Rate Effects and Plastic Annealed Aluminum, in: “Proc. AS ME Coll. on Behavior of Materials under Dynamic Loading”,:81 (1965).Google Scholar
  25. 25.
    W. R. Andrews and C. F. Shih, Thickness and Side Groove Effects on J- and 6-Resistance Curves for A533-B Steel at 93°C, in: “Elastic-Plastic Fracture, ASTM STP 668”, American Society for Testing and Materials, Philadelphia, (1979).Google Scholar
  26. 26.
    J. R. Rice and M. A. Johnson, in: “Inelastic Behavior of Solids”, Ed. by M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffee, McGraw-Hill, New York,:641 (1970)Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Hoff
    • 1
  • C. A. Rubin
    • 1
  • G. T. Hahn
    • 1
  1. 1.Department of Mechanical and Materials EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations