Skip to main content

Electron Capture in Ion-Atom Collisions

  • Chapter

Abstract

The rearrangement process is one of the more outstanding problems in atomic collision theory. The molecular, near-adiabatic approach is well documented at low energies; but a fully consistent description of the momentum transfer to the captured electron has not yet been developed although some progress has been made with electron translation factors (see Briggs’ lecture in this volume). At high energies collisions may be considered to be impulsive and perturbative. However, unlike the excitation process, the convergence of standard perturbation series has not yet been assessed, neither has the appropriate first order approximation been generally isolated. Let us here mention two problems in this connection. First of all, there is more than one natural expansion parameter since the perturbations in initial and final channels are different. Secondly, initial and final states are non-orthogonal during the collision. Unless special care is excerted this may lead to spuriously large transition amplitudes in approximative calculations. The situation is illustrated in figure 1, where |i> and |f> represent the initial and final states while |s> represents the state of the system. We consider a case where the system is only weakly disturbed during the collision, i.e. |s>≃|i> for all t.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Pedersen, J.Phys. B14, L249 (1981)

    Google Scholar 

  2. L. H. Thomas, Proc.Roy. Soc. 114, 561 (1927)

    Article  ADS  Google Scholar 

  3. J. S. Briggs, P. T. Greenland and L. Kocbach, J.Phys. B (to be published)

    Google Scholar 

  4. P. R. Simony and J. H. McGuire, J. Phys. B (to be published)

    Google Scholar 

  5. J. S. Briggs and K. Taulbjerg, J.Phys. B12, 2565 (1979)

    ADS  Google Scholar 

  6. J. H. Macek, J. E. Potter, M. M. Duncan, M. G. Menendez, M. W. Lucas, and W. Steckelmacher, Phys.Rev.Lett. 46, 1571 (1981)

    Article  ADS  Google Scholar 

  7. J. S. Briggs, J.Phys. B10, 3075 (1977)

    ADS  Google Scholar 

  8. J. H. Macek and K. Taulbjerg, Phys.Rev.Lett. 46, 170 (1981)

    Article  ADS  Google Scholar 

  9. J. H. Macek and S. Alston, Phys.Rev. A26, 250 (1982)

    ADS  Google Scholar 

  10. J. H. Macek and R. Shakeshaft, Phys. Rev. A22, 1441 (1980)

    ADS  Google Scholar 

  11. R. A. Mapleton, J.Math.Phys. 2, 482 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. Alston, Phys.Rev. A (to be published)

    Google Scholar 

  13. Dz. Belkić, J.Phys. B10, 3491 (1977); B12, 337 (1977)

    ADS  Google Scholar 

  14. J. S. Briggs, J. H. Macek and K. Taulbjerg, Com.Atom.Mol.Phys. 12, 1, (1982)

    Google Scholar 

  15. J. Eichler and F. T. Chan, Phys.Rev. A20, 104 (1979); F.T. Chan and J. Eichler, Phys.Rev.A20, 1841 (1979); J. Eichler and H. Narumi, Zeit.Phys. A295, 209 (1980)

    ADS  Google Scholar 

  16. E. Horsdal Pedersen, unpublished

    Google Scholar 

  17. S. Andriamonje, J.F. Chemin, J. Routurier, J. N. Scheurer, H. Laurent and J. P. Schapira, Abstracts of XII ICPEAC, Gotenburg (1981), p.657

    Google Scholar 

  18. J. R. Macdonald, C. L. Cocke and W. W. Eidson, Phys.Rev.Lett. 32, 648 (1974)

    Article  ADS  Google Scholar 

  19. E. Horsdal Pedersen, Invited Talks, XII ICPEAC Gatlingburg (1981) p. 139

    Google Scholar 

  20. R. Shakeshaft, PRA 17, 1011 (1978)

    Article  ADS  Google Scholar 

  21. J. S. Briggs, J.Phys.B 13, L717 (1980)

    Article  ADS  Google Scholar 

  22. I. M. Cheshire, Proc.Phys.Soc. 84, 89 (1964)

    Google Scholar 

  23. R. M. Drisko, Ph.D. Thesis, Carnegie Institute of Technology (1955)

    Google Scholar 

  24. R. McCarrol and A. Salin, J.Phys.B 1, 163 (1968)

    Article  ADS  Google Scholar 

  25. R. L. Becker, P. L. Ford and J. R. Reading, J.Phys.B 13, 4059 (1980)

    Article  ADS  Google Scholar 

  26. D. R. Bates, Proc.Roy.Soc.A 247, 294 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. F. Reading, A. L. Ford, G. L. Swafford and A. Fitchard, Phys.Rev.A 20, 130 (1979)

    Article  ADS  Google Scholar 

  28. A. L. Ford, J. F. Reading and R. L. Becker, Phys.Rev.A 23, 510 (1981), and to be published in Phys.Rev.

    Article  ADS  Google Scholar 

  29. C. D. Lin, S. C. Song and L. N. Tunnell, Phys.Rev.A 17, 1646 (1978), and C D. Lin, S. C. Song, Phys.Rev.A18, 499 (1978)

    Article  ADS  Google Scholar 

  30. K. Fujiwara, J.Phys.B 14, 3977 (1981)

    Article  ADS  Google Scholar 

  31. R. Shakeshaft, Phys.Rev. A14, 1626 (1976)

    ADS  Google Scholar 

  32. T. G. Winter, Phys.Rev. A25, 697 (1982)

    ADS  Google Scholar 

  33. B. M. Bransden and C. J. Noble, J. Phys. B14, 1849 (1981)

    ADS  Google Scholar 

  34. I. M. Cheshire, D. F. Gallaher and A. J. Taylor, J.Phys. B3, 813 (1970)

    ADS  Google Scholar 

  35. D. G. M. Anderson, M. J. Antal and M. B. McElroy, J.Phys. B7 L 118 (1974) and J.Phys.B14’, 1707 (1981)

    ADS  Google Scholar 

  36. C. D. Lin, T. G. Winter and W. Fritsch, Phys.Rev. A25, 2395 (1982)

    ADS  Google Scholar 

  37. W. Fritsch and C. D. Lin J.Phys. B15, 1255 (1982) and Phys. Scripta (to be published)

    ADS  Google Scholar 

  38. P. J. Martin, D. M. Blakenship, T. J. Kvale, E. Redd, J. L. Peacher and J. T. Park, Phys.Rev. A23, 3357 (1981)

    ADS  Google Scholar 

  39. T. G. Winter, G. J. Hattons and N. F. Lane, Phys.Rev. A22, 930

    Google Scholar 

  40. R. Shakeshaft, Phys.Rev. A18, 1930 (1978)

    ADS  Google Scholar 

  41. G. C. Angel, E. C. Servell K. F. Dunn and H. B. Gilbody, J.Phys. B11, L297 (1978)

    ADS  Google Scholar 

  42. B. Peart, R. Grey and K. T. Dolder J.Phys. B10, 2675 (1977)

    ADS  Google Scholar 

  43. G. W. McClure, Phys.Rev. 148, 47 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  44. H. J. Lüdde and R. M. Dreizler, J.Phys. B15, 2713 (1982)

    ADS  Google Scholar 

  45. G. J. Hatton, N. F. Lane and T. G. Winter, J.Phys. B12, L571 (1979)

    ADS  Google Scholar 

  46. H. Ryafuku and T. Watanabe Phys.Rev. A18, 2005 (1978)

    ADS  Google Scholar 

  47. M. B. Shah and H. B. Gilbody, J.Phys. B11, 121 (1978)

    ADS  Google Scholar 

  48. N. Bohr and J. Lindhard, Dan.Mat.Fys.Medd. 28, no. 7 (1954)

    Google Scholar 

  49. N. Bohr, Dan. Mat.Fys.Medd. 18, no. 8 (1948)

    Google Scholar 

  50. H. Knudsen, H. K. Haugen and P. Hvelplund, Phys.Rev. A23, 597 (1981) and Phys.Rev. A24, 2287 (1981)

    ADS  Google Scholar 

  51. H. Ryufuku and T. Watanabe, Phys.Rev. A19, 1538 (1979), and H. Ryufuku, Phys.Rev. A25, 720 (1982)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Taulbjerg, K. (1983). Electron Capture in Ion-Atom Collisions. In: Lutz, H.O., Briggs, J.S., Kleinpoppen, H. (eds) Fundamental Processes in Energetic Atomic Collisions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3781-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3781-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3783-6

  • Online ISBN: 978-1-4613-3781-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics