B Lymphocyte Stimulation and Suppression by the Fc Portion of Immunoglobulin

  • Monique A. Berman
  • Michael S. Ascher


The Fc region of immunoglobulin (Ig), whether in the form of an Fc fragment1, aggregated Ig1,2 or an immune complex3 can induce normal murine splenic B cells and human peripheral blood B lymphocytes to proliferate and differentiate to polyclonal antibody-secreting cells. Only the Fc portion of Ig is able to induce this response. Fab or F(ab′)2 fragments, either soluble or heat aggregated, are inactive. Some change has to occur in the Fc part of the molecule since unaggregated intact IgG is inactive. It appears that the alterations of IgG that occur with heat aggregation and after interaction of IgG antibody with antigen, as well as by splitting Fc from the parent molecule by papain digestion, all expose a site in the Fc portion that is masked in the intact molecule and which is critical in mitogenesis. The mitogenic signal of Fc fragments does not appear to depend on approximation of Fc regions by aggregation. Mitogenically active human Fc fragments obtained by cleavage with papain have a sedimentation rate of Fc monomers and do not appear to aggregate in the culture medium1. Further, heat aggregation or chemical crosslinking of purified Fc fragments does not increase their mitogenicity (unpublished observation).


Spleen Cell Mitogenic Signal Lymphocyte Stimulation Spleen Cell Culture Papain Digestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Berman and W. O. Weigle, B-lymphocyte activation by the Fc region of IgG, J. Exp. Med. 146: 241 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    E. L. Morgan and W. O. Weigle, Aggregated human gammaglobulininduced proliferation and polyclonal activation of murine B lymphocytes, J. Immunol. 125: 226 (1980).PubMedGoogle Scholar
  3. 3.
    E. L. Morgan and W. O. Weigle, Regulation of B lymphocyte activation by the Fc portion of immunoglobulin, J. Supramolecular Struct. 14: 201 (1981).CrossRefGoogle Scholar
  4. 4.
    E. L. Morgan and W. O. Weigle, Aggregated human gammaglobulininduced proliferation and polyclonal activation of murine B lymphocytes, J. Immunol. 125: 226 (1980).PubMedGoogle Scholar
  5. 5.
    B. Robert and R. S. Bockman, Studies on the proteolytic activity of gammaglobulin preparations, Biochem. J. 102: 554 (1967).PubMedGoogle Scholar
  6. 6.
    J. S. Finlayson, Immune globulins, Sem. Thromb. Hemostasis 6: 44 (1979).CrossRefGoogle Scholar
  7. 7.
    S. Erhan and L. D. Greller, Do immunoglobulins have proteolytic activity?, Nature 251: 353 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    E. J. Victoria and L. C. Mahan, Proteolysis of red cell membrane proteins by immunoglobulin G preparations, Mol. Immunol. 18: 699 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    E. L. Morgan and W. O. Weigle, Regulation of Fc fragment induced murine spleen cell proliferation, J. Exp. Med. 151: 1 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    M. A. Berman, H. L. Spiegelberg and W. O. Weigle, lymphocyte stimulation with Fc fragments. I. Class, subclass, and domain of active fragments, J. Immunol. 122: 89 (1979).PubMedGoogle Scholar
  11. 11.
    R. Jefferies, J. B. Mathews and P. M. Bayley, Studies of human IgG myeloma proteins. Conformational changes induced in the Fc delta fragment on heating or exposure to acid pH, Immunochemistry 15: 19 (1978).CrossRefGoogle Scholar
  12. 12.
    A. C. Ghose and B. Jirgensons, Conformational studies on the tryptic digestion fragments of human immunoglobulin G, Archs. Biochem. Biophys. 144: 384 (1971).CrossRefGoogle Scholar
  13. 13.
    D. A. Charwood and S. Utsumi, Conformation changes and dissociation of Fc fragments of rabbit immunoglobulin as a function of pH, Biochem. J. 112: 357 (1969).Google Scholar
  14. 14.
    M. Vandenbranden, J. L. De Coen, R. Jeener, L. Kanarek and J. M. Ruyschaert, Interactions of gamma-immunoglobulins with lipid mono-or bilayers and liposomes. Existence of two conformations of gamma-immunoglobulins of different hydrophobicities, Mol. Immunol. 18: 621 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Barandun, A. Morell and F. Skvaril, Clinical use of intravenous gamma-globulin, Biblthca haemat. 46: 170 (1980).Google Scholar
  16. 16.
    S. Barandun, F. Skvaril and A. Morell, Prophylaxe and Therapie mit Gamma Globulin, Schweiz. med. Wschr. 106: 533 (1976).PubMedGoogle Scholar
  17. 17.
    E. L. Morgan and W. O. Weigle, Polyclonal activation of human B lymphocytes by Fc fragments. I. Characterization of the cellular requirements for Fc fragment-mediated polyclonal antibody secretion by human peripheral blood B lymphocytes, J. Exp. Med. 154: 778 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    E. L. Morgan and W. O. Weigle, Polyclonal activation of human murine B-lymphocytes by Fc fragments. I. The requirement for two signals in the generation of the polyclonal antibody response induced by Fc fragments, J. Immunol. 124: 1330 (1981).Google Scholar
  19. 19.
    M. L. Thoman, E. L. Morgan and W. O. Weigle, Polyclonal activation of murine B lymphocytes by Fc fragments. II. Replacement of T cells by a soluble helper T cell-replacing factor (TRF), J. Immunol. 125: 1630 (1980).PubMedGoogle Scholar
  20. 20.
    M. L. Thoman, E. L. Morgan and W. O. Weigle, Fc fragment activation of T lymphocytes. I. Fc fragments trigger Lyt-1+23 T lymphocytes to release a helper T cell-replacing factor, J. Immunol. 126: 632 (1981).PubMedGoogle Scholar
  21. 21.
    E. L. Morgan, M. L. Thoman and W. O. Weigle, Enhancement of T lymphocyte functions by Fc fragments of immunoglobulins. I. Augmentations of allogeneic mixed lymphocyte culture reactions requires I-A or I-B subregion differences between effector and stimulator cell populations, J. Exp. Med. 153: 1161 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    E. L. Morgan, M. L. Thoman and W. O. Weigle, Enhancement of T lymphocyte functions by Fc fragments of immunoglobulin. II. Augmentation of the cell-mediated lympholysis response occurs through an Lyt-1+2 helper T cell, J. Immunol. 127: 2526 (1981).PubMedGoogle Scholar
  23. 23.
    M. A. Berman, E, L. Morgan and W. O. Weigle, Lymphocyte stimulation with Fc fragments. II. Requirements for mature B lymphocytes, Cell. Immunol. 52: 341 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    M. C. Gelfand, G. J. Elfenbein, M. M. Frank and W. E. Paul, Ontogeny of B lymphocytes. II. Relative rates of appearance of lymphocytes bearing surface immunoglobulin and complement receptors, J. Exp. Med. 139: 1125 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    M. C. Gelfand, D. H. Sachs, R. Lieberman and W. E. Paul, Ontogeny of B lymphocytes. III. H-2 linkage of a gene controlling the rate of appearance of complement receptor lymphocytes, J. Exp. Med. 139: 1142 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Scher, A. Ahmed and S. O. Sharrow, Murine B lymphocyte heterogeneity: distribution of complement receptor-bearing and minor lymphocyte-stimulating B lymphocytes among cells with different densities of total surface Ig and IgM, J. Immunol. 119: 1938 (1977).PubMedGoogle Scholar
  27. 27.
    A. Ahmed, I. Scher, S. O. Sharrow, A. H. Smith, W. E. Paul, D. H. Sachs and K. W. Sell, B lymphocyte heterogeneity: development of an alloantiserum which distinguishes B lymphocyte differentiation alloantigens, J. Exp. Med. 145: 101 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Ahmed and I. Scher, Murine B cell heterogeneity defined by anti-Lyb5, an alloantiserum specific for a late-appearing B lymphocyte subpopulation, in:“B lymphocytes in the immune response,” M. Cooper, D. E. Mosier, E. S. Vitetta and I. Scher eds., Elsevier-North Holland, Inc., New York, p 117 (1979).Google Scholar
  29. 29.
    A. Singer, J. Morrissey, S. Hathcock, A. Ahmed, I. Scher and R. J. Hodes, Role of the major histocompatibility complex in T cell activation of B cell subpopulations. Lyb-5+ and Lyb-5 B cell subpopulations differ in their requirement for major histocompatibility complex-restricted T cell recognition, J. Exp. Med. 154: 501 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    E. L. Morgan, S. M. Walker, M. L. Thoman and W. O. Weigle, Regulation of the immune response. I. The potentiation of in vivo and in vitro immune responses by Fc fragments, J. Exp. Med. 152: 113 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    W. O. Weigle and M. A. Berman, Role of the Fc portion of antibody in immune regulation, in:“Cells of immunoglobulin synthesis,” B. Pernis, H. J. Vogel, eds., Acad. Press, New York, 1:627 (1980).Google Scholar
  32. 32.
    T. Tadakuma and C. W. Pierce, Mode of action of soluble immune response suppressor (SIRS) produced by Con A-activated spleen cells, J. Immunol. 120: 481 (1978).PubMedGoogle Scholar
  33. 33.
    W. H. Fridman, C. Rabourdin-Combe, C. Neauport-Sautes and R. H. Gisler, Characterization and function of T cell Fc gamma receptor, Immunol. Rev. 56: 51 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    M. W. Turner and D. S. Rowe, A naturally occurring fragment related to the heavy chains of immunoglobulin G in normal urine, Nature 210: 130 (1966).PubMedCrossRefGoogle Scholar
  35. 35.
    I. Berggard and H. Nennich, Fc fragment of immunoglobulin G in normal human plasma and urine, Nature 214: 69 (1976).Google Scholar
  36. 36.
    F. Skvaril, L. Theilkas, M. Probst, A. Morell and S. Barandun, IgG subclasses IgG subclass composition and immunochemical characteristics of plasmin-treated human gammaglobulin, Vox Sang. 30: 334 (1976).CrossRefGoogle Scholar
  37. 37.
    J. Fehr, LoSpalluto and M. Ziff, Digestion of immunoglobulin G by lysosomal enzymes, Fedn. Proc. 28: 496 (1969).Google Scholar
  38. 38.
    D. A. Low, J. B. Baker, W. C. Koonce and D. Cunningham, Released protease-nexin regulates cellular binding, internalization, and degradation of serine proteases, Proc. Natl. Acad. Sci. 78: 2340 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    D. J. Knauer and D. D. Cunningham, Epidermal growth factor carrier protein binds to cells via a complex formed with released carrier protein nexin, Proc. Natl. Acad. Sci. (in press).Google Scholar
  40. 40.
    J. Watson, S. Gillis, J. Marbrook, D. Mochizuki and K. A. Smith, Biochemical and biological characterization of lymphocyte regulatory molecules. I. Purification of a class of murine lymphokines, J. Exp. Med. 150: 849 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Monique A. Berman
    • 1
  • Michael S. Ascher
    • 1
  1. 1.Department of MedicineUniversity of CaliforniaIrvineUSA

Personalised recommendations