Skip to main content

Depletion of Stratospheric Ozone: Impact of UV-B Radiation upon Nonhuman Organisms

  • Chapter
The Analysis of Actual Versus Perceived Risks

Part of the book series: Advances in Risk Analysis ((AIRA,volume 1))

  • 186 Accesses

Abstract

For years, scientists and laymen alike have casually noted the impact of solar ultraviolet radiation upon the nonhuman component of the biosphere. It was not until recently, when human activities were thought to threaten the protective stratospheric ozone shield, that researchers undertook intensive studies into the biological stress caused by the previously slightly short-wavelength edge of the global solar spectrum. It is stratospheric ozone that functions effectively as an ultraviolet screen, filtering out solar radiation in the 220–320 nm waveband as it penetrates through the atmosphere, allowing only small amounts of the longer wavelengths of radiation in this waveband to leak through to the surface of the earth. Although this radiation (UV-B radiation, 290–320 nm) comprises only a minute fraction (less than 2%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA, absorb UV-B radiation which can initiate photochemical reactions. It is Life’s ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated the concern over the potential depletion of stratospheric ozone. The defense mechanisms that serve to protect both plants and animals from current levels of UV-B radiation are quite varied. Whether these mechanisms will suffice under conditions of enhanced levels of UV-B radiation is the subject of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halldall, P., Photoinactivations and their reversals in growth and motility of the green alga Playmonas (Volvocales), Physiol. Plant., 14: 558–575 (1961).

    Article  Google Scholar 

  2. Van, T. K., and Garrard, L. A., Effect of UV-B radiation on net photosynthesis of some C3 and C4 crop plants, Proc. Soil Crop Sci., Florica, 35:1–3 (1975).

    Google Scholar 

  3. Sisson, W. B., and Caldwell, M. M., Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (288 to 315 namometers) simulating a reduced atmospheric ozone column, Plant Physiol., 58:563–568 (1976).

    Article  CAS  Google Scholar 

  4. Sisson, W. B., and Caldwell, M. M., Atmospheric ozone depletion: Reduction of photosynthesis and growth of a sensitive higher plant exposed to enhanced UV-B radiation, J. Exp. Bot., 28: 691–705 (1977).

    Article  CAS  Google Scholar 

  5. Van, T. K., Garrad, L. A., and West, S. H., Effects of UV-B radiation on net photosynthesis of some crop plants, Crop. Sci., 16:715–718 (1976).

    Article  CAS  Google Scholar 

  6. Van, T. K., Garrard, L. A., and West, S. H., Effects of 298-nm radiation on photosynthetic reactions of leaf discs and chlorplast preparations of some crop species, Environ. Exp. Bot., 17:107–112 (1977).

    Article  CAS  Google Scholar 

  7. Brandie, J. R., Campbell, W. F., Sisson, W. B., and Caldwell, M. M., Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation, Plant Physiol., 60:165–169 (1977).

    Article  Google Scholar 

  8. Basiouny, F. M., Van, T. K., and Biggs, R. H., Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B, Physiol. Plant, 42:29–32 (1978).

    Article  CAS  Google Scholar 

  9. Teramura, A. H., Biggs, R. H., and Kossuth, S., Effects of ultraviolet-B irradiances on soybean, Plant Physiol., 65:483–488 (1980).

    Article  CAS  Google Scholar 

  10. Berg, R. H., and Garrard, L. A., The production of tobacco haploid plants: Utilization for UV-B-stree ultrastructural studies, Proc. Soil Crop Soc, Florida, 36:160–164 (1976).

    Google Scholar 

  11. Dickson, J. G., and Caldwell, M. M., Leaf development of Rumex patentia L. (Polygonaceae) exposed to UV irradiation (280–320 nm), Amer. J. Bot., 65:857–863 (1978).

    Article  Google Scholar 

  12. Lindoo, S. J., and Caldwell, M. M., Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of antho-cyanin production, Plant Physiol., 61:278–282 (1978).

    Article  CAS  Google Scholar 

  13. Lindoo, S. J., Seeley, S. D., and Caldwell, M. M., Effects of ultraviolet-B radiation stress on the abscisic acid status of Rumex patentia leaves, Physiol. Plant, 45:67–72 (1979).

    Article  CAS  Google Scholar 

  14. Teramura, A. H., Effects of ultraviolet-B irradiances on soybean: I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth, Physiol. Plant, 48:333–339 (1980).

    Article  Google Scholar 

  15. Kossuth, S. V., and Biggs, R. H., Ultraviolet radiation affects blueberry fruit quality, Sci. Hort., 14:145–150 (1981).

    Article  Google Scholar 

  16. Brabham, D. E., and Biggs, R. H., Cis-trans photoisomerization of abscisic acid, Photochem. Photobiol. (1981), in press.

    Google Scholar 

  17. Krizek, D. T., Influence of ultraviolet radiation on germination and early seedling growth, Physiol. Plant, 34:182–186 (1975).

    Article  Google Scholar 

  18. Robberecht, R., and Caldwell, M. M., Leaf epidermis transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury, Oecologia (Berl.), 32:277–287 (1978).

    Article  Google Scholar 

  19. Semeniuk, P., and Stewart, R. N., Seasonal effect of UV-B radiation on poinsettia cultivars, J. Amer. Soc. Hort. Sci., 104: 246–248 (1979).

    Google Scholar 

  20. Semeniuk, P., and Stewart, R. N., Comparative sensitivity of cultivars of Coleus to increased UV-B radiation, J. Amer. Soc. Hort. Sci., 104:471–474 (1979).

    Google Scholar 

  21. Ambler, J. E., Krizek, D. T., and Semeniuk, R., Influence of UV-B radiation on early seedling growth and translocation of 65Zn from cotyledons in cotton, Physiol. Plant, 34:177–181 (1975).

    Article  CAS  Google Scholar 

  22. Vu, C. V., Allen, L. H., and Garrard, L. A., Effects of supplemental ultraviolet radiation (UV-B) on growth of some agronomic crop plants, Proc. Soil Crop Sci. Soc, Florida, 38:59–63 (1978).

    Google Scholar 

  23. Biggs, R. H., Kossuth, S. V., and Teramura, A. H., Response of 19 cultivars of soybeans to ultraviolet-B irradiances, Physiol. Plant. (1981), in press.

    Google Scholar 

  24. Garrard, L. A., Van, T. K., and West, S. H., Plant response to middle ultraviolet (UV-B) radiation: Carbohydrate levels and chloroplast reactions, Proc. Soil Crop Sci. Soc, Florida, 36: 184–188 (1976).

    CAS  Google Scholar 

  25. Kossuth, S. V., and Biggs, R. H., Sunburned blueberries, Proc. Fla. State Hort. Soc, 91:173–175 (1978).

    Google Scholar 

  26. Chang, D. C., and Campbell, W. F., Responses of Tradescantia stamen hairs and pollen to UV-B irradiation, Environ. Exp. Bot., 16:195–199 (1976).

    Article  Google Scholar 

  27. Jerlov, N. G., Irradiance, in: Marine Optics, pp. 127–150, Elsevier Scientific, Amsterdam (1976).

    Google Scholar 

  28. Steemann Nielsen, E., On a complication in marine productivity work due to the influence pf ultraviolet light, J. Cons. Cons. Int. Explor. Mer., 29:130–135 (1964).

    Google Scholar 

  29. Jitts, H. R., Morel, A., and Saijo, Y., The relation of oceanic primary production to available photosynthetic irradiance, Aust. J. Mar. Freshwater Res., 27:441–454 (1976).

    Article  Google Scholar 

  30. Van Dyke, H., and Thomson, B. E., Response of a simulated estuarine community to UV irradiation, in: Impacts of Climatic Change on the Biosphere, Part I: Ultraviolet Radiation Effects, D. S. Natchtwey, eds., pp. 5–95 to 5–113, U.S. Dept. Transportation, DOT-TST-75-55, Washington, D.C. (1975).

    Google Scholar 

  31. Worrest, R. C., Van Dyke, H., and Thomson, B. E., Impact of enhanced simulated solar ultraviolet radiation upon a marine community, Photochem. Photobiol., 27:471–478 (1978).

    Article  Google Scholar 

  32. Worrest, R. C., Brooker, D. L., and Van Dyke, H., Results of a primary productivity study was affected by the type of glass in the culture bottles, Limnol. Oceanogr., 25:360–364 (1980).

    Article  CAS  Google Scholar 

  33. Wolniakowski, K. U., The physiological response of a marine phytoplankton species, Dunaliella tertiolecta, to mid-wavelength ultraviolet radiation, M.S. Thesis, Oregon State University, 101 pp. (1980).

    Google Scholar 

  34. Smith, R. C., Baker, K. S., Holm-Hansen, O., and Olson, R., Photoinhibition of photosynthesis in natural waters, Photo-chem. Photobiol., 31:585–592 (1980).

    Article  CAS  Google Scholar 

  35. Worrest, R. C., Thomson, B. E., and Van Dyke, H., Impact of UV-B radiation upon estuarines microcosms, Photochem. Photobiol. (1981), in press.

    Google Scholar 

  36. Worrest, R. C., Wolniakowski, K. U., Scott, J. D., Brooker, D. L., Thomson, B. E., and Van Dyke, H., Sensitivity of marine phytoplankton to UV-B radiation: Impact upon a model ecosystem, Photochem. Photobiol., 33:223–227 (1981).

    Article  Google Scholar 

  37. Calkins, J., and Thordardottir, The ecological significance of solar UV radiation on aquatic organisms, Nature, 283:563–566 (1980).

    Article  Google Scholar 

  38. Thomson, B. E., Worrest, R. C., and Van Dyke, H., The growth response of an estuarine diatom (Melosira nummuloides [Dillw. ] ag.) to UV-B (290–320 nm) radiation, Estuaries, 3:69–72 (1980).

    Article  Google Scholar 

  39. Anderson, D. E., Cancer eye in cattle, Mod. Vet. Pract., 51: 43–47 (1970).

    Google Scholar 

  40. Kopecky, K. E., Ozone depletion: Implications for the veterinarian, J. Amer. Vet. Med. Assoc., 173:729–733 (1978).

    CAS  Google Scholar 

  41. Kopecky, K. E., Pugh, G. W., Jr., Hughes, P. E., Booth, G. D., and Cheville, N. F., Biological effects of ultraviolet radiation on cattle: Bovine ocular squamous cell carcinoma, Amer. J. Vet. Res., 40:1783–1788 (1979).

    CAS  Google Scholar 

  42. Hughes, D. E., and Pugh, G. W., A five year study of infectious bovine kerato-conjunctivities, J. Amer. Vet. Med. Assoc, 157: 443–451 (1970).

    CAS  Google Scholar 

  43. Rehbinder, C., Keratitis in reindeer, Acta Vet. Scand., 18: 75–85 (1977).

    CAS  Google Scholar 

  44. Barcelo, J., Photoeffects of visible and ultraviolet radiation on the two-splotted spider mite, Tetranychus urticae, Photochem. Photobiol., 33:703–706 (1980).

    Article  Google Scholar 

  45. Bell, G. M., and Hoar, W. S., Some effects of ultraviolet radiation on sockeye salmon eggs and alevins, Can. J. Res., 28: 35–43 (1950).

    Article  Google Scholar 

  46. Dunbar, C. E., Sunburn in fingerling rainbow trout, Prog. Fish Cult., 21:74 (1959).

    Article  Google Scholar 

  47. Marinaro, J. Y., and Bernard, M., Contribution à l’étude des oeufs et larves pélagiques de Poissons méditerranéens, I. Note preliminarie sur l’influence léthale du rayonnement solaire sur les oeufs. Pelagos, 6:49–55 (1966).

    Google Scholar 

  48. Hunter, J. R., Taylor, J. H., and Moser, H. G., Effects of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mordax, on the Pacific mackerel, Scomber japonicus, during the embryonic stage, Photochem. Photobiol., 29:325–338 (1979).

    Article  CAS  Google Scholar 

  49. Hunter, J. R., and Kaupp, S. E., Effects of solar and artificial ultraviolet-B radiation on larval northern anchovy, Engraulis mordax, Photochem. Photobiol. (1981), in press.

    Google Scholar 

  50. Karanas, J. J., Van Dyke, H., and Worrest, R. C., Midultraviolet (UV-B) sensitivity of Acartia clausii Giesbrech (Copepoda), Limnol. Oceanogr., 24:1104–1116 (1979).

    Article  Google Scholar 

  51. Karanas, J. J., Worrest, R. C., and Van Dyke, H., Impact of UV-B radiation (290–320 nm) on the fecundity of Acartia clausii (Copepoda), Mar. Biol. (1981), in press.

    Google Scholar 

  52. Damkaer, D. M. Dey, D. B., Heron, G. A., and Prentice, E. F., Effects of UV-B radiation on near-surface zooplankton of Puget Sound, Oecologia (Berl.), 44:149–158 (1980).

    Article  Google Scholar 

  53. Damkaer, D. M., Dey, D. B., and Heron, G. A., Dose/dose-rate responses of shrimp larvae to UV-B radiation, Oecologia (Berl.) (1981), in press.

    Google Scholar 

  54. Jokiel, P. L., Solar ultraviolet radiation and coral reed epi-fauna, Science, 207:1069–1071 (1980).

    Article  CAS  Google Scholar 

  55. NAS, Committee on Impac ts of Stratospheric Changes, in: Protection Against Depletion of Stratospheric Ozone by Chlorofluorocarbons, National Academy of Sciences, Washington, D.C., 392 pp. (1979).

    Google Scholar 

  56. E. I. Du Pont de Nemours and Company, Comments on the advance notice of proposed rulemaking — Ozone-depleting chlorofluorocarbons: proposed production restriction, Wilmington, Delaware (1981).

    Google Scholar 

  57. Caldwell, M. M., Robberecht, R., and Billings, W. D., A steep latitudinal gradient of solar ultraviolet-B radiation in the arctic-alpine life zone, Ecology, 61:600–611 (1980).

    Article  Google Scholar 

  58. Robberecht, R., Caldwell, M. M., and Billings, W. D., Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone, Ecology, 61:612–619 (1980).

    Article  Google Scholar 

  59. Hunter, J. R., Kaupp, S. E., and Taylor, J. H., Assessment of effects of UV radiation on marine fish larvae, Proceedings of the NATO Advanced Research Institute on the Role of Solar Ultraviolet Radiation in Marine Ecosyterns, Copenhagen, Denmark, 1980 (1981).

    Google Scholar 

  60. Smith, R. C., and Baker, K. S., Stratospheric ozone, middle ultraviolet radiation, and carbon-14 measurements of marine productivity, Science, 208:592–593 (1980).

    Article  CAS  Google Scholar 

  61. Smith, R. C., and Baker, K. S., Biologically effective dose transmitted by culture bottles in 14C productivity experiments, Limnol. Oceanogr., 25:364–366 (1980).

    Article  CAS  Google Scholar 

  62. Jones, L. W., and Kok, B., Photoinhibition of chloroplast reactions, 1. Kinetics and action spectra, Plant Physiol., 41: 1037–1043 (1966).

    Article  CAS  Google Scholar 

  63. Green, A. E. S., and Miller, J. H., Measures of biologically effective radiation in the 280–340 nm region, in: Impacts of Climatic Change in the Biosphere, Part I: Ultraviolet Radiation Effects, D. S. Nachtwey et al., eds., pp. 2–60 to 2–70, U.S. Dept. Transportation, DOT-TST-75-55, Washington, D.C. (1975).

    Google Scholar 

  64. Setlow, R. B., The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Nat. Acad. Sci. USA, 71:3363–3366 (1974).

    Article  CAS  Google Scholar 

  65. Caldwell, M. M., Solar ultraviolet radiation as an ecological factor for alpine plants, Ecol. Monogr., 38:243–268 (1968).

    Article  Google Scholar 

  66. Green, A. E. S., Cross, K. R., and Smith, L. A., Improved analytic characterization of ultraviolet skylight, Photochem. Photobiol., 31:59–65 (1980).

    Article  Google Scholar 

  67. Rothman, R. H., and Setlow, R. B., An action spectrum for cell killing and pyrimidine dimer formation in Chinese hamster V-79 cells, Photochem. Photobiol., 29:57–62 (1979).

    Article  CAS  Google Scholar 

  68. Elkind, M. M., Han, A., and Chang-Liu, C.-M., “Sunlight”-induced mammalian cell killing: A comparative study of ultraviolet and near-ultraviolet inactivation, Photochem. Photobiol., 27:709–715 (1978).

    Article  CAS  Google Scholar 

  69. Elind, M. M., and Han, A., DNA single-strand lesions due to “sunlight” and UV light: A comparison of their induction in Chineses hamster and human cells, and their fate in Chinese hamster cells, Photochem. Photobiol., 27:717–724 (1978).

    Article  Google Scholar 

  70. Lorenzen, C. J., Ultraviolet radiation and phytoplankton photosynthesis, Limnol. Oceanogr., 24:1117–1120 (1979).

    Article  Google Scholar 

  71. Conrad, M., Biological adaptability: The statistical state model, BioScience, 26:319–324 (1976).

    Article  Google Scholar 

  72. Fox, F. M., and Caldwell, M. M., Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation, Oecologia (Berl.), 36:173–190 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Worrest, R.C. (1983). Depletion of Stratospheric Ozone: Impact of UV-B Radiation upon Nonhuman Organisms. In: Covello, V.T., Flamm, W.G., Rodricks, J.V., Tardiff, R.G. (eds) The Analysis of Actual Versus Perceived Risks. Advances in Risk Analysis, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3760-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3760-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3762-1

  • Online ISBN: 978-1-4613-3760-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics