Skip to main content

Part of the book series: Advances in Nuclear Science and Technology ((ANST,volume 15))

Abstract

Linear aspects of nuclear stochastic phenomena have been widely observed and utilized, either for identification or diagnosis of nuclear power plant systems. At zero-power state, the neutron branching (fission) process plays a critical role and reveals the non-Poissonian nature of neutron or high-energy photon statistics, which now are firmly formulated under the sound premise that the fluctuations belong to the linear, first-order Markovian stochastic process. Nuclear reactors operated at a rated power level naturally involve diversified noise sources originating from thermodynamical, hydraulic or structural rather than nuclear effects. The atpower reactor noise is intrinsically a nonlinear, stochastic phenomenon, though it has been, more or less, successfully analyzed in a linearized framework.

No stochastic phenomenon displaying nonlinearity is easily amenable to analysis and careful examination will be required to determine whether or not nonlinearity really is exerting any effect upon the experimental/theoretical reconciliation stage of analyzing the phenomena.

The present article critically reviews:

  1. 1.

    What “nonlinear” physical effects are bringing forth stochastic phenomena in nuclear reactors.

  2. 2.

    How “nonlinear” operation in the course of measurement and system identification affects intrinsic physical structures and reveals novel properties.

  3. 3.

    How and when the “nonlinear” aspects are theoretically treated.

  4. 4.

    What reasoning is applied to the characterization of “nonlinear” nuclear stochastics and how we make them theoretically tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pacilio, N., Colombino, A., Mosiello, R., Norelli, F. and Jorio, V. M., “The Analysis of Reactor Noise: Measuring Statistical Fluctuations in Nuclear systems,” in Advances in Nuclear Science and Technology, by E. J. Henley, J. Lewins and M. Becker, Editors, Vol. 11, Pages 67–134, Plenum Press, New York, 1979.

    Chapter  Google Scholar 

  2. Lewins, J., “Variational Method in Neutron Stochastics,” Annals of Nuclear Energy, 5, Pages 141–147, 1980.

    Article  Google Scholar 

  3. Wing, G. M., An Introduction to Transport Theory, John Wiley & Sons, Inc., New York, 1962.

    Google Scholar 

  4. Mingle, J. O., The Invariant Imbedding Theory of Nuclear Transport, Elsevier Publishing Company, Inc., New York, 1973.

    Google Scholar 

  5. Kubo, R.,”Fluctuation-Dissipation Theorem and Brownian Motion,” in Many-Body Theory, R. Kubo, Editor, Shokabo Publishing Company and W. A. Benjamin, Inc., Tokyo and New York, 1966.

    Google Scholar 

  6. Williams, M. M. R., Random Processes in Nuclear Reactors, Pergamon Press, Oxford, 1974.

    Google Scholar 

  7. Saito, K., “On the Theory of Power Reactor Noise,” Ann. Nuclear Science Engineering (now Ann. Nuclear Energy), 1, Pages 31–48, 107–128, 209–221, 1974.

    Article  Google Scholar 

  8. Saito, K., “Source Papers in Reactor Noise,” Prog. Nuclear Energy, 3, Pages 157–218, 1979.

    Article  Google Scholar 

  9. Thie, J. A., “Core Motion Monitoring,” Nuclear Technology, 45, Pages 5–45, 1979.

    Google Scholar 

  10. Kosaly, G., “Noise Investigations in Boiling Water and Pressurized Water Reactors,” Progress in Nuclear Energy, 4, Pages 145–199, 1980.

    Article  Google Scholar 

  11. Williams, M. M. R., “An Exact Solution of the Extinction Problem in Super-critical Multiplying Systems,” Ann. Nuclear Energy, 6, Pages 463–472, 1979.

    Article  Google Scholar 

  12. Lewins, J. D., “Equations for the Stochastic Cumulative Multiplying Chain,” Ann. Nuclear Energy, 7, Pages 505–508, 1980.

    Article  Google Scholar 

  13. Boyce, W. E., “Random Eigenvalue Problems,” in Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid, Editor, Volume 1, Pages 1–73, 1968.

    Google Scholar 

  14. Greenspan, E., “Developments in Perturbation Theory,” in Advances in Nuclear Science and Technology, E. J. Henley and J. Lewins, Editors, Volume 9, Pages 181–268, Academic Press, New York, 1976.

    Google Scholar 

  15. Van Dam, H., “Reactivity Effects and Space-Domain Noise Caused by Randomly Dispersed Materials in a Reactor Core,” Progress in Nuclear Energy, 1, Pages 273–282, 1977.

    Article  Google Scholar 

  16. Goryunov, V. K., “Spatial Fluctuations in Neutron and Power Distribution in Critical Reactor,” Soviet Atomic Energy, 44, Pages 407–410, 1978.

    Article  Google Scholar 

  17. Saito, K., “Theory of Stochastic Space-Dependent Neutron Kinetics with a Gaussian Parametric Excitation,” Ann. Nuclear Energy, 7, Pages 83–98, 1980.

    Article  ADS  Google Scholar 

  18. Yamada, S., Nishimura, M. and Sumita, K., “Reactivity Effects and Flux Perturbations Due to Spatial Random Dispersal in the Number Densities of Core Materials,” Ann. Nuclear Energy, 7, Pages 561–568, 1980.

    Article  Google Scholar 

  19. Shabalin, E. P., Fast Pulsed and Burst Reactors, Pergamon Press, Oxford, 1979.

    Google Scholar 

  20. Saito, K., “Exact Solution of Point Reactor Kinetic Equation with Gaussian Reactivity Fluctuation Having Exponential-Type Correlation,” Journal Nuclear Science and Technology, 17, Pages 162–164, 1980.

    Article  Google Scholar 

  21. Turkan, E., “Results of the Temperature Noise Measurements of Sodium Cooled Electrically Heated 28 Rod Bundle Behind a Blockage,” Progress in Nuclear Energy, Pages 497–506, 1977.

    Google Scholar 

  22. Matsubara, K. “Identification of Channel Void Generation Noise in BWR,” Journal Nuclear Science and Technology, 17, Pages 737–746, 1980.

    Article  Google Scholar 

  23. Nomura, T., “Noise Analysis of Boiling Water Reactor,” in Preprints: Japan-United States Seminar on Nuclear Reactor Noise Analysis, N. Suda, Editor, Pages 197–210, 1968.

    Google Scholar 

  24. Wiener, N., Nonlinear Problems in Random Theory, John Wiley & Sons, Inc., New York, 1958.

    MATH  Google Scholar 

  25. Kuroda, Y., private communication, 21 January 1980.

    Google Scholar 

  26. Scott, A. C., Chu, F. Y. F. and McLaughlin, D. W., “The Soliton — A New Concept in Applied Science,” Proceedings of the IEEE, 61, Pages 1443–1483, 1973; and “Solitons in Physics,” Physica Scripta, 20, Pages 289–560, 1979.

    Article  MathSciNet  ADS  Google Scholar 

  27. Oguma, R., “Investigation of Resonant Power Oscillation in Halden Boiling Water Reactor Based on Noise Analysis,” Journal Nuclear Science and Technology, 17, Pages 677–686, 1980.

    Article  Google Scholar 

  28. Hooper, R. J. and Gyftopoulos, E. P., “On the Measurement of Characteristic Kernels of a Class of Nonlinear Systems,” in Neutron Noise, Waves and Pulse Propagation, R. E. Unrig, Editor, USAEC Symposia, Series No. 9, CONF-660206, Pages 343–356, Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, Springfield, 1967.

    Google Scholar 

  29. Marmarelis, V. Z., Masri, S. F., Udwadia, F. E., Caughey, T. K. and Jeong, G. D., “Analytical and Experimental Studies of the Modeling of a Class of Nonlinear Systems,” Nuclear Engineering Design, 55, Pages 59–68, 1979.

    Article  Google Scholar 

  30. Olsson, G., “Modeling and Identification of a Nuclear Reactor,” in System Identification; Advances and Case Studies, R. K. Mehra and D. G. Lainiotis, Editors, Pages 519–593, Academic Press, New York, 1976.

    Chapter  Google Scholar 

  31. Kerlin, T. W., Zwingelstein, G. C. and Upadhyaya, B. R., ”Identification of Nuclear Systems,” Nuclear Technology, 36, Pages 7–38, 1977.

    Google Scholar 

  32. Suda, N. and Shirai, S., “Estimation of Reactor Parameters by Optimal Filtering Method,” Journal Nuclear Science and Technology, 8, Pages 438–443, 1971.

    Article  Google Scholar 

  33. Shinohara, Y. and Oguma, R., “Estimation of Time Varying Reactivity Using a Method of Nonlinear Filtering,” Nuclear Science Engineering, 52, Pages 76–83, 1973.

    Google Scholar 

  34. Dragt, J. B., “Reactor Noise Analysis by Means of Polarity Correlation,” Nukleonik, 8, Page 225, 1966.

    Google Scholar 

  35. Ohlmer, E. and Schwalm, D., “The Evaluation of a One-Dimensional Temperature Profile in a Turbulent Fluid Flow from the Amplitude Distribution of Measured Temperature Fluctuations at a Fixed Detector Position,” International Journal of Heat Mass Transfer, 19, Pages 765–770, 1976.

    Article  ADS  Google Scholar 

  36. Firth, D., “A Monte Carlo Approach to the Theoretical Prediction of Temperature Noise in LMFBR Sub-assemblies,” Progress in Nuclear Energy, 1, Pages 527–542, 1977.

    Article  Google Scholar 

  37. Harris, D. R., “Stochastic Fluctuations in a Power Reactor, USAEC WAPD-TM—190, 1958.

    Google Scholar 

  38. Pluta, P. R., “An Analysis of Fluctuations in a Boiling Water Reactor by Methods of Stochastic Processes,” USAEC APED-4071, 1962.

    Google Scholar 

  39. Matthey, M., “Quantization of Stochastic Variables: Description and Effects on the Input Noise Sources in a BWR,” Ann. Nuclear Energy, 6, Pages 345–353, 1979.

    Article  Google Scholar 

  40. Pacilio, N., Colombino, A. and Fiore, D., “Temperature Noise in One-Phase Heat Transfer: Stochastic Models,” Ann. Nuclear Energy, 7, Pages 151–169, 1980.

    Article  Google Scholar 

  41. Prescop, V., “A Stochastic Model of a Two-Region Nuclear Power Reactor with Xenon: Stationarity and Stability,” Ph.D. Thesis, Carnegie-Mellon University, Pitttsburgh, 1968.

    Google Scholar 

  42. Van Kampen, N. G., “A Power Series Expansion of the Master Equation,” Canadian Journal Physics, 39, Pages 551–567, 1961.

    Article  ADS  MATH  Google Scholar 

  43. Kubo, R., Matsuo, K. and Kitahara, K., “Fluctuation and Relaxation of Macrovariables,” Journal Stat. Physics, 9, Pages 51–96, 1973.

    Article  ADS  Google Scholar 

  44. Akcasu, Z. A., “Fluctuations of Macrovariables in Nonlinear Systems: Langevin Equation Approach,” Journal Stat. Physics, 16, Pages 33–58, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  45. Quabili, E. R., “Application of System-Size Expansion to Nonlinear Reactor Noise Analysis,” Ann. Nuclear Energy, 7, Pages 185–191, 1980.

    Article  Google Scholar 

  46. Harris, D. R., “Multiplicative Process with Feedback,” in Naval Reactor Physics Handbook, A. Radokowsky, Editor, Volume 1, Pages 1079–1085, 1964.

    Google Scholar 

  47. Dudziak, D. J., “Stability of a Multiplicative Stochastic Process with Linear Feedback,” USAEC WAPD-T-1479, 1963.

    Google Scholar 

  48. Bateman, H., Higher Transcendental Functions, A. Erdèlyi, Editor, Volume 1, McGraw-Hill Book Co., Inc., New York, 1953.

    Google Scholar 

  49. Dudziak, D. J., “Stochastic Stability of a Reactor with Linear Feedback,” Nuclear Science Engineering, 41, Pages 129–132, 1970.

    Google Scholar 

  50. Krist, G. A. and Poncelet, C. G., “The Stability of Power Reactors Subject to Stochastic Macroscopic Parameter Variation,” Nuclear Science Engineering, 51, Pages 347–375, 1973.

    Google Scholar 

  51. Harris, D. R. and Prescop, V., “Stability and Stationarity of a Reactor as a Stochastic Process with Feedback,” Nuclear Science Engineering, 31, Pages 171–179, 1969.

    Google Scholar 

  52. Dutré, W. L. and Debosscher, A. F., “Exact Statistical Analysis of Nonlinear Dynamic Nuclear-Power Reactor Models by the Fokker-Planck Method—Part I: Reactor with Direct Power Feedback,” Nuclear Science Engineering, 62, Pages 355–363, 1977.

    Google Scholar 

  53. Karmeshu, “A Stochastically Perturbed Nonlinear Point Reactor Model,” Ann. Nuclear Energy, 5, Pages 21–25, 1978.

    Article  Google Scholar 

  54. Debosscher, A. F. and Dutré, W. L., “Exact Statistical Analysis of Nonlinear Dynamic Power Reactor Models by the Fokker-Planck Method—Part II: Reactor with On-Off Control,” Nuclear Science Engineering, 69, Pages 347–353, 1979.

    Google Scholar 

  55. Debosscher, A. F., “Exact Statistical Analysis of Nonlinear Dynamic Power Reactor Models by the Fokker-Planck Method—Part III: Reactor with Temperature Feedback,” Nuclear Science Engineering, 69, Pages 354–362, 1979.

    Google Scholar 

  56. Cukier, R. I., Lakatos-Lindenberg, K. and Shuler, K. E., “Orthogonal Polynomial Solutions of the Fokker-Planck Equation,” Journal Stat. Physics, 9, Pages 137–144, 1973.

    Article  ADS  Google Scholar 

  57. Goel, N. S. and Richter-Dyn, N., Stochastic Models in Biology, Academic Press, New York, 1974.

    Google Scholar 

  58. Caughey, T. K. and Dienes, J. K., “The Behaviour of Linear Systems with Random Parametric Excitation,” Journal of Mathematics Physics, 41, Pages 300–318, 1962.

    MathSciNet  Google Scholar 

  59. Leibowitz, M. A., “Statistical Behaviour of Linear Systems with Randomly Varying Parameters,” Journal of Math. Physics, 4, Pages 852–858, 1963.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Graefe, P. W. U., “Linear Stochastic Systems,” National Research Council of Canada, Mechanical Engineering Report, MK-20, NRC No. 9526, 1966.

    Google Scholar 

  61. Evlanov, L. G., “Method of Analyzing Systems Containing Random Parameters,” Automatic Remote Control, 29, Pages 1218–1225, 1968.

    Google Scholar 

  62. Akcasu, Z. A. and Karasulu, M., “Nonlinear Response of Point-Reactors to Stochastic Inputs,” Annals Nuclear Energy, 3, Pages 11–18, 1976.

    Article  Google Scholar 

  63. Sako, O., “Some Aspects of Stability of Quasi-Linear Reactor Systems Subject to Multiplicative Noise Processes,” Journal Nuclear Science Technology, 15, Pages 543–546, 1978.

    Article  Google Scholar 

  64. Sako, O., “Stochastic Analysis of Nonlinear Point Reactor Systems with Colored Multiplicative Noise,” Journal Nuclear Science Technology, 17, Pages 323–338, 1980.

    Article  Google Scholar 

  65. Haken, H., “Cooperative Phenomena in System far from Thermal Equilibrium and in Nonphysical Systems,” Review Modern Physics, 47, Pages 67–121, 1975.

    Article  MathSciNet  ADS  Google Scholar 

  66. Saito, K., “Noise-Equivalent Source in Nuclear Reactors,” Nuclear Science Engineering, 28, Pages 384–396, 1967.

    Google Scholar 

  67. Doob, J. L., Stochastic Processes, John Wiley & Sons, Inc., New York, 1953.

    MATH  Google Scholar 

  68. Anderson, T. W., The Statistical Analysis of Time Series, John Wiley & Sons, Inc., New York, 1971.

    MATH  Google Scholar 

  69. Kishida, K. and Sasakawa, H., “Hidden State Variables and AR-MA Formulation of Reactor Noise,” Journal Nuclear Science Technology, 17, Pages 16–25, 1980.

    Article  Google Scholar 

  70. Karmeshu and Bansal, N. K., “Stability of Moments in a Simple Neutronic System with Stochastic Parameters,” Nuclear Science Engineering, 58, Pages 321–327, 1975.

    Google Scholar 

  71. Karmeshu and Bansal, N. K., “Statistical Description of a Point Reactor in the Absence of Delayed Neutrons,” Atomkernenergie, 28, Pages 79–84, 1976.

    Google Scholar 

  72. Bansal, N. K., “A Calculation of the Time-Dependent Probability Distribution for Point Reactor,” Atomkernenergie, 28, Pages 296–297, 1976.

    Google Scholar 

  73. Bourret, R. C., “Ficton Theory of Dynamical System with Noisy Parameters,” Canadian Journal Physics, 43, Pages 619–639, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  74. Gotoh, Y., “Study of the Power Density by a Nonlinear Response to the Stochastic Input,” Annals Nuclear Energy, 2, Pages 119–125, 1975.

    Article  Google Scholar 

  75. Quabili, E. Q. and Karasulu, M., “Methods for Solving the Stochastic Point Reactor Kinetic Equations,” Annals Nuclear Energy, 6, Pages 133–143, 1979.

    Article  Google Scholar 

  76. Ishimaru, A., Wave Propagation and Scattering in Random Media, Volume 2, Academic Press, New York, 1978.

    Google Scholar 

  77. Frisch, U., “Wave Propagation in Random Media,” in Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid, Editor, Volume 1, Pages 75–198, 1968.

    Google Scholar 

  78. Analytis, G. Th., “An Application of Stochastic Differential Equations to the Investigation of the Effects of Space-and Time-Dependent Random Parametric Excitations in Heterogeneous Reactors,” Private Communication, April, 1980.

    Google Scholar 

  79. Van Kampen, N. G., “Stochastic Differential Equations,” Physics Report, 24 (Section C of Physics Letters), Pages 171–228, 1976.

    Article  ADS  Google Scholar 

  80. Akcasu, A. Z., Lellouche, G. and Shotkin, L. M., Mathematical Methods in Nuclear Reactor Dynamics, Academic Press, New York, 1971.

    Google Scholar 

  81. Brissaud, A. and Frisch, U., “Solving Linear Stochastic Differential Equations,” Journal Mathematics Physics, 15, Pages 524–534, 1974.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. Meyer, K., “Untersuchungen über die Ortsabhängigkeit von Rauschprozessen in Druckwasserreaktoren,” Kernenergie, 20, Pages 10–20, 1977.

    Google Scholar 

  83. Kunze, U., “Rauschprozesse in Druckwasserreaktoren als Folge von schwingenden Brennelementen,” Kernenergie, 22, Pages 164–168, 1979.

    Google Scholar 

  84. Meyer, K., “Über die Berechnung der Spekltradichte der Schwankungen des Neutronenflusses bei stochastischen Schwingungen von Steuerelementen eines Kernreaktors,” Kernenergie, 22, Pages 86–90, 127–131 and 263–267, 1979.

    Google Scholar 

  85. Meyer, K., “Ein eindimensionales Eingruppenmodell für einen Reaktor mit stochastisch schwingenden Steuerelementen,” Kernenergie, 22, Pages 192–197, 1979.

    Google Scholar 

  86. Lloyd, R. C., “Buckling Measurements for Fuel Elements in a Random Array versus a Uniform Array,” USAEC HW-57919, 1959.

    Google Scholar 

  87. Antonopoulos-Domis, M., “Reactivity and Neutron Density Noise Excited by Random Rod Vibration,” Annals Nuclear Energy, 3, Pages 451–459, 1976.

    Article  Google Scholar 

  88. Antonpoulos-Domis, M. and Colebrooke, A., “Neutron Fluctuations Induced by Absorber Vibrations: The QMC Reactor Experiment—I,” Annals Nuclear Energy, 6, Pages 579–584, 1979.

    Article  Google Scholar 

  89. Pazsit, I., “Investigation of the Space-Dependent Noise Induced by a Vibrating Absorber,” Atomkernenergie, 30, Pages 29–35, 1977.

    Google Scholar 

  90. Pazsit, I., “Two-Group Theory of Noise in Reflected Reactors with Application to Vibrating Absorbers,” Annals Nuclear Energy, 5, Pages 185–196, 1978.

    Article  Google Scholar 

  91. Pàzsit, I. and Analytis, G. Th., “Theoretical Investigation of the Neutron Noise Diagnostics of Two-Dimensional Control Rod Vibrations in a PWR,” Annals Nuclear Energy, 7, Pages 171–183, 1980.

    Article  Google Scholar 

  92. Saito, K., “An Application of Novikov-Furutsu Formula to Solving Stochastic Point Reactor Kinetics Having a Gaussian Parametric Noise with an Arbitrary Spectral Profile,” Annals Nuclear Energy, 6, Pages 591–593, 1979.

    Article  Google Scholar 

  93. Bansal, N. K. and Borgwaldt, H., “On the Response of a Critical Point Reactor to Inherent Reactivity Noise Input,” Annals Nuclear Energy, 6, Pages 1–5, 1979.

    Article  Google Scholar 

  94. Karmeshu and Bansal, N. K., “Calculation of Moments for Point Reactor Without Delayed Neutrons,” Journal Nuclear Science Technology, 14, Pages 69–71, 1977

    Article  Google Scholar 

  95. Smets, H. B., “Exact Solutions of the Reactor Kinetic Equations,” Bulletin Academie Royale Belgique, 3, Pages 256–271, 1959.

    MathSciNet  Google Scholar 

  96. Larson, H. J. and Shubert, B. O., Probabilistic Models in Engineering Sciences, Volume II, Random Noise, Signals, and Dynamic Systems, John Wiley & Sons, Inc., New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Saito, K. (1983). Nonlinear Nuclear Stochastic Theory. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3757-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3757-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3759-1

  • Online ISBN: 978-1-4613-3757-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics