A Fuzzy, Heuristic, Interactive Approach to the Optimal Network Problem

  • Didier Dubois


Among the various problems that have to be solved in the transportation planning field, that of designing optimally a network has focused the attention of many researchers. The network is formally represented as a graph and we must find a subset of the maximal set of links, which are for instance streets or roads. The problem belongs to the combinatorial field, and its optimal solving is impossible for practical-sized sets of data; we are forced to use heuristic methods which are not completely satisfactory by their very nature.


Travel Time Short Path Fuzzy Number Transportation Network Interactive Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. A. Avila, “Optimal design of transportation network with fluctuating demands: A case in multicommodity network flows”. Stanford University, Calif. 1972.Google Scholar
  2. 2.
    G. Bel, D. Dubois, and M. Llibre, A set of methods in transportation network synthesis and analysis, J. Opl. Res. Soc., 30, 797–808, 1979.Google Scholar
  3. 3.
    R. Bellman and L. A. Zadeh, Local and Fuzzy Logics, Memo. ERL M504 Electronics Research Lab., University of California, Berkeley, 1976.Google Scholar
  4. 4.
    J. W. Billheimer, Network design of fixed and variable elements. Transportation science, Vol. 7, No. 1, 1973, pp. 49–74.CrossRefGoogle Scholar
  5. 5.
    D. E. Boyce, A. Fahri, and R. Weishedel, “Optimal network problem: a branch and bound algorithm.” Environment and Planning, Vol. 5, 1973, pp. 519–533.CrossRefGoogle Scholar
  6. 6.
    A. De Luca and R. M. Capocelli, Fuzzy sets and decision theory. Inf. and Cont. 23, 1973, pp. 446–473.MATHCrossRefGoogle Scholar
  7. 7.
    D. Dubois, Quelques outils Methodologiques pour la conception de reseaux de transport. These Doct. Ing. ENSAE/CERT-DERA Toulouse, France, 1977.Google Scholar
  8. 8.
    D. Dubois and H. Prade, Algorithmes de plus court chemins pour traiter des donnees floues, R.A.I.R.O. ( 1978, No. 2).Google Scholar
  9. 9.
    D. Dubois and H. Prade, A comment on “Tolerance analysis using fuzzysets” and “A procedure for multiple aspect decision making using fuzzy sets by R. Jain”. in Int. J. on Systems Science, Vol. 9, No. 3, 1978, pp. 357–360.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. Dubois and H. Prade, “Operations on fuzzy numbers”, Int. J. on Systems Science, 1978, Vol. 9, No. 6, 613–626.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    D. Dubois and H. Prade, “Systems of linear fuzzy constraints”, Fuzzy Sets and Systems, 3, 37–48, 1980.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    B. R. Gaines, Foundations of fuzzy reasoning, Int. J. Man Machine Studies, 8, 1976, pp. 623–668, also in [14].MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. M. Geoffrion and R. Nauss, “Parametric and post-optimality analysis in integer linear programming”, Working paper, No. 246, 1976, UCLA.Google Scholar
  14. 14.
    M. M. Gupta, G. Saridis, and B. R. Gaines, Fuzzy Automata and Decision Processes, North-Holland, 1977.Google Scholar
  15. 15.
    Hoang Hai Hoc, A computational approach to the selection of an optimal network, Management Science, 19, 1973, No. 5, pp. 488–498.MATHCrossRefGoogle Scholar
  16. 16.
    R. Jain, A procedure for multiple aspect decision making using fuzzy sets, Int. J. on Systems Science, 8, 1977, Vol. 1, pp. 1–7.Google Scholar
  17. 17.
    Jeroslow, “A one constraint 149-variable zero one program requiring 9 million years for solving using branch and bound method. Techn. Rep. Carnegie Mellon Univ., Pittsburgh, 1973.Google Scholar
  18. 18.
    D. S. Johnson, J. K. Lenstra, and A. G. H. Rinnoy Khan., “The complexity of the network design problem,” Math. Cent. Dept. of Opns. Res., Amsterdam, 1977.Google Scholar
  19. 19.
    R. M. Karp, “On the computational complexity of combinatorial problems”, Networks, 5, 1975, pp. 45–68.MathSciNetMATHGoogle Scholar
  20. 20.
    A. Kaufmann, “Introduction a la theorie des sous ensembles flous et a ses applications.” Tomes 1,2,3,4, 1973–1976, Masson.Google Scholar
  21. 21.
    G. L. Nemhauser, L. E. Trotter, and M. J. Magazine, “When the greedy solution solves the knapsack problem.” Opns. Res. 23, 2, 1975, 207–217.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    M. Loss, Optimal network design without congestion: some computational results. Univ. of Montreal Centre de Recherches sur les transports #40, 1976.Google Scholar
  23. 23.
    Loubal, “A network evaluation procedure.” Bay Area Transportation Commission, 1966.Google Scholar
  24. 24.
    Nahmias, “Fuzzy Variables.” presented at ORSA TIMS Meeting, Miami, 1976, also “Fuzzy Sets and Systems, Vol. 1, No. 2, 1978, pp. 97–111.Google Scholar
  25. 25.
    R. M. Nauss, Parametric Integer Programming, Ph.D. Dissertation UCLA. Working paper No. 226, 1975.Google Scholar
  26. 26.
    Ochoa-Rosso, “Optimum project addition in urban transportation network via descriptive traffic assignment models. D.C.E./M.I.T., Cambridge, Mass., 1968.Google Scholar
  27. 27.
    Poulit, “Urbanisme et transport: le critere d’accessibilite et de development urbain”, S.E.T.R.A. Division Urbaine, 1970.Google Scholar
  28. 28.
    H. Prade, Ordonnancement et temps reel. These doct. ing. ENSAE/CERT-DERA, Toulouse, France, 1977.Google Scholar
  29. 29.
    H. Prade, “Exemple d’approche heuristique, interactive, floue pout un probleme d’ordonnancement.” Communication presented at AFCET Congress “Modelisation et Maitrise des Systemes” Versailles. Nov., 1977. Editions Hommes et Techniques. vol. 2, pp. 347–355. “Using Fuzzy Sets Theory in a Scheduling Problem: A Case Study”, “Fuzzy Sets and Systems”, 2, 153–165, 1979.MathSciNetMATHGoogle Scholar
  30. 30.
    S. Sahni, “Computationally related problems”, SIAM J. on Computers, 3, 1976, No. 4.MathSciNetGoogle Scholar
  31. 31.
    A. J. Scott, The optimal network problem: some computational procedures Transportation Research, Vol. 3, 1969, pp. 201–210.Google Scholar
  32. 32.
    S. Stairs, “Selecting an optimal traffic network”, Jr. of Transport, Economics, and Policy, 1968, pp. 218–231.Google Scholar
  33. 33.
    L. A. Zadeh, Fuzzy sets, Inf. and Cont. 8, 1965, pp. 338–353.MathSciNetMATHGoogle Scholar
  34. 34.
    L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Trans. on System, Man and Cybernetics, 3, pp. 28–44.Google Scholar
  35. 35.
    Y. P. Chan, “Optimal travel time reduction in a transport network”, Res. Rep. R-69–39, M.I.T.-D.C.E., Cambridge, Mass., 1969.Google Scholar
  36. 36.
    C. Daganzo and Y. Sheffi, “On stochastic models of traffic assignment,” Trans. Sci., 11 (3) 1977, pp. 253–274.CrossRefGoogle Scholar
  37. 37.
    R. B. Dial, A probabilistic multipath assignment model which obviates path enumeration, Trans. Res. 5, 1971, 83–111.CrossRefGoogle Scholar
  38. 38.
    A. Rosenfeld, “Fuzzy graphs,” in L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, Eds. Fuzzy Sets and their Applications to Cognitive and Decision Sciences, Academic Press, New York, 1975, pp. 77–95.Google Scholar
  39. 39.
    Steenbrink, “Optimization of Transport Networks”, Wiley, 1974.Google Scholar
  40. 40.
    L. A. Zadeh, PRUF-A meaning representation language for natural language. Memo ERL M 77 61, Univ. of Calif., Berkeley, 1977.Google Scholar
  41. 41.
    L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, “Fuzzy Sets and Systems” I, n°I, pp. 3–28, 1978.Google Scholar
  42. 42.
    J. G. Koenig, Indicators of urban accessibility: theory and applications, Transportation, 9, n°2, 1980, 145–172.CrossRefGoogle Scholar
  43. 43.
    D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.MATHGoogle Scholar
  44. 44.
    D. Dubois and H. Prade, Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory, to appear in “Fuzzy set and decision analysis” ( H. J. Zimmermann and L. A. Zadeh, eds.) TIMS Series in the management sciences, 1982, North Holland.Google Scholar
  45. 45.
    D. Dubois and H. Prade, Unfair coins and necessity measures submitted to Fuzzy Sets and Systems.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Didier Dubois
    • 1
  1. 1.Department d’Etudes et de Recherches en AutomatiqueCERTToulouse CedexFrance

Personalised recommendations