Skip to main content

Abstract

Visual perception has perplexed researchers in philosophy and psychology for centuries. Now it’s also perplexing computer scientists. Despite persistent efforts by many noted scientists, it is still unclear how our brain “sees” the visual signals received by our eyes [10]. Earlier it was believed that a good understanding of optics, the retinal image, and the anatomy and physiology of eye and brain would unravel the puzzle of visual perception. However, the many advances in these fields have not solved the problem.

This research was supported by the National Science Foundation under grant number MCS81000148.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. Allen, Measuring the empirical properties of a set, IEEE Trans. Systems, Man and Cybernetics, SMC-4, pp. 66–73, 1974.

    Google Scholar 

  2. H. G. Barrow and J. M. Tenenbaum, Recovering intrinsic scene characteristics for images, in “Computer Vision Systems,” ed., A. Hanson and E. M. Riseman, Academic Press, 1978.

    Google Scholar 

  3. J. C. Bezdek and P. F. Castelaz, Prototype classification and feature selection with fuzzy sets, IEEE Trans. on Systems, Man and Cybernetics, SMC-7, #2, pp. 87–92, February 1977.

    Article  Google Scholar 

  4. S. K. Chang, On the execution of fuzzy programs using finite-state machines, IEEE Trans. Computers, vol. C-21, #3, pp. 241–253, March 1972.

    Article  Google Scholar 

  5. L. S. Davis and A. Rosenfeld, Hierarchial relaxation for waveform parsing, in “Computer Vision Systems,” ed. A. R. Hanson and E. M. Riseman, Academic Press, pp. 101–109, 1978.

    Google Scholar 

  6. R. O. Duda and P. Hart, “Pattern Classification and Scene Analysis,” Wiley International, 1973.

    MATH  Google Scholar 

  7. L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The Hearsay-II Speech-Understanding system: Integrating knowledge to resolve uncertainty,” Computing Surveys, vol. 12, #2, pp. 213–253, June 1980.

    Article  Google Scholar 

  8. M. A. Fischler, On the representation of natural scenes, in “Computer Vision Systems,” ed. A. R. Hanson and E. M. Riseman, Academic Press, pp. 47–52, 1978.

    Google Scholar 

  9. B. R. Gaines, Foundations of fuzzy reasoning, Int. J. Man-Machine Studies, vol. 8, #6, pp. 623–668, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. J. Gibson, “The Ecological Approach to Visual Perception,” Houghton Miflin Company, Boston, 1979.

    Google Scholar 

  11. G. H. Granlund, In search of a general picture processing operator, Computer Graphics and Image Processing, vol. 8, #2, pp. 155–178, October 1978.

    Article  Google Scholar 

  12. G. H. Granlund, D. Antonsson, J. Arvidsson, M. Hedlund, P. Henden, H. Knutsson, K. Lundgren, B. Nilsson, B. V. Post, and R. Wilson, The GOP Image Processor, in Proceedings of Computer Architecture for Pattern Analysis and Image Database Management, pp. 195–200, Hot Springs, Virginia, November 1981.

    Google Scholar 

  13. R. L. Haar, The representation and manipulation of position information using spatial relation, TR 923, Computer Science Center, University of Maryland, August 1980.

    Google Scholar 

  14. A. R. Hanson and E. M. Riseman, VISIONS: A computer system for interpreting scenes, in “Computer Vision Systems,” ed. A. R. Hanson and E. M. Riseman, Academic Press, pp. 303–333, 1978.

    Google Scholar 

  15. S. M. Haynes and R. Jain, Detection of Moving Edges, Technical Report, TR 82–004, Department of Computer Science, Wayne State University, Detroit, Michigan, 1982.

    Google Scholar 

  16. R. Jain, Applications of fuzzy sets for the analysis of complex scenes, in Advances in Fuzzy Set Theory and Applications, ed. M.M. Gupta, North Holland, pp. 577–587, 1979.

    Google Scholar 

  17. R. Jain, Extraction of motion information from peripheral processes, Trans. on PAMI, vol. PAMI-3, #5, pp. 489–503, September 1981.

    Article  Google Scholar 

  18. R. Jain and H. H. Nagel, On the analysis of accumulative difference pictures from image sequences of real world scenes, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-1, #2, pp. 206–214, April 1979.

    Article  Google Scholar 

  19. R. Jain and J. K. Aggarwal, Computer Analysis of Curved Objects, Proceedings of the IEEE, vol. 67, #5, pp. 805–812, March 1979.

    Article  Google Scholar 

  20. E. T. Lee, The shape-oriented dissimilarity of polygons and its application to the classification of chromosome images, Pattern Recognition vol. 6, pp. 47–60, 1974.

    Article  MathSciNet  Google Scholar 

  21. D. Marr, Early processing of visual information, A. I. Memo No. 340, MIT, December 1975.

    Google Scholar 

  22. W. N. Martin and J. K. Aggarwal, SURVEY-Dynamic Scene Analysis, Computer Graphics and Image Processing, vol. 7, #3, pp. 356–374, May 1978.

    Article  Google Scholar 

  23. R. Reddy, Pragmatic aspects of machine vision, in “Computer Vision Systems,” ed. A. R. Hanson and E. M. Riseman, Academic Press, 1978.

    Google Scholar 

  24. A. Rosenfeld, R. A. Hummel and S. W. Zucker, Scene Labeling by Relaxation Operations, IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-6, pp. 420–433, 1976.

    Article  MathSciNet  Google Scholar 

  25. B. Widrow, The rubber mask technique I. Pattern Recognition, vol. 5, pp. 175–194, 1973.

    Article  Google Scholar 

  26. P. H. Winston, “Artificial Intelligence,” Addison-Wesley Publication, Reading, Massachusetts, 1977.

    MATH  Google Scholar 

  27. L. A. Zadeh, Fuzzy Sets, Information and Control, vol. 8, #3, pp. 338–353, June 1965.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Part I, Information Sciences, vol. 8, pp. 199–249, Part II, Information Sciences, vol. 8, pp. 301–357, Part III, Information Sciences, vol. 9, pp. 43–80, 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Jain, R., Haynes, S. (1983). Imprecision in Computer Vision. In: Wang, P.P. (eds) Advances in Fuzzy Sets, Possibility Theory, and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3754-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3754-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3756-0

  • Online ISBN: 978-1-4613-3754-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics