Advertisement

The Effect of Additives for Accelerating Radiation Grafting: The Use of the Technique for Modification of Polymers Especially Polyolefins

  • Chye H. Ang
  • John L. Garnett
  • Ronald G. Levot
  • Mervyn A. Long
Part of the Polymer Science and Technology book series (POLS, volume 21)

Abstract

Radiation grafting is a convenient one-step method for modifying the properties of polymers1,2. Both ultraviolet light3–7 and ionizing radiation8–12 are useful initiators for the process, however the latter method possesses advantages, especially with cobalt-60 type ionizing sources, because of the penetrating effect of the gamma rays. There are a number of procedures using ionizing radiation which can lead to grafting. Of these, the mutual or simultaneous technique is generally the most useful and will be discussed in depth in this article. Any method for accelerating the procedure is valuable, especially for those backbone polymers which are especially sensitive to ionizing radiation. In such instances, it is preferable to use the lowest total radiation dose to achieve a particular percentage graft.

Keywords

Monomer Concentration Backbone Polymer Acid Effect Styrene Monomer Abstraction Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Charlesley, “Atomic Radiation and Polymers,” Pergamon, Oxford (1960).Google Scholar
  2. 2.
    A. Chapiro, “Radiation Chemistry of Polymeric Systems,” Interscience, New York (1962).Google Scholar
  3. 3.
    N. Geacintov, V. Stannett, E.W. Abrahamson and J.J. Hermans, J. Appl. Polym. Sci. 3, 54 (1960).CrossRefGoogle Scholar
  4. 4.
    A.H. Reine and J.C. Arthur, Jr., Text. Res. J. 42, 155 (1972).CrossRefGoogle Scholar
  5. 5.
    G. Oster and N.L. Yang, Chem. Rev. 68, 125 (1968).CrossRefGoogle Scholar
  6. 6.
    S. Tazuke, T. Matoba, H. Kimura and T. Okado, A.C.S. Symp. Ser. 121, 217 (1980).CrossRefGoogle Scholar
  7. 7.
    N.P. Davis, J.L. Garnett and R. Urquhart, J. Polym. Sci. Polym. Lett. Ed. 14, 537 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. Phillips, J. Quere, G. Guiroy and V.T. Stannett, Tappi, 55, 858 (1972).Google Scholar
  9. 9.
    R.J. Demint, J.C. Arthur, Jr., A.R. Markezich and W.F. McSherry, Radiation-induced interaction of styrene with cotton, Text. Res. J. 32:918 (1962).CrossRefGoogle Scholar
  10. 10.
    A. Hebeish and J.T. Guthrie, “The Chemistry and Technology of Cellulosic Copolymers”, Springer-Verlag, Berlin (1980).Google Scholar
  11. 11.
    S. Dilli and J.L. Garnett, Aust. J. Chem. 24:981 (1971).CrossRefGoogle Scholar
  12. 12.
    J.L. Garnett, Grafting, J. Rad. Phys. Chem. 14, 79 (1979).ADSGoogle Scholar
  13. 13.
    M.B. Huglin and B.L. Johnson, J. Poly. Sci. A-l, 7, 1379 (1969).Google Scholar
  14. 14.
    J.L. Garnett and R.S. Kenyon, J. Polym. Sci. Polym. Lett. Ed. 15, 421 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Garnett and N.T. Yen, J. Polym. Sci. Polym. Lett. Ed., 12, 225 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Kline, Analytical Chemistry of Polymers Part 1, 3rd Edition, Interscience, Publishers, New York (1966).Google Scholar
  17. 17.
    G. Odian, T. Acker, and M. Sobel, J. Appl Polym. Sci., 7, 245 (1963).CrossRefGoogle Scholar
  18. 18.
    S. Machi, I. Kamel and J. Silverman, J. Polym. Sci. A-l, 8, 3329 (1970).Google Scholar
  19. 19.
    J.E. Wilson, “Radiation Chemistry of Monomers, Polymers and Plastics”, Marcel Dekker, New York (1974).Google Scholar
  20. 20.
    J.L. Garnett, ACS Symposium Series, No. 48, “Cellulose Chemistry and Technology” J.C. Arthur, Jr., Ed., p. 334 (1977).Google Scholar
  21. 21.
    S. Dilli and J.L. Garnett, with J. Appl Polym. Sci. 11, 859.Google Scholar
  22. 22.
    S. Dilli, J.L. Garnett and D.H. Phuoc, J. Polym. Sci. Polym. Letters Ed. 11, 711 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    A. Ekstrom and J.L. Garnett, J. Phys. Chem. 70, 324 (1966).CrossRefGoogle Scholar
  24. 24.
    D.F. Sangster and A. Davison, J. Polym. Sci. Symp. No. 49, 191 (1975).CrossRefGoogle Scholar
  25. 25.
    J.L. Garnett and N.T. Yen, Aust. J. Chem. 32, 585 (1979).CrossRefGoogle Scholar
  26. 26.
    J.L. Garnett and N.T. Yen, ACS Symp. Ser. 121, 243 (1980).CrossRefGoogle Scholar
  27. 27.
    J.L. Garnett, S.V. Jankiewicz, and D.F. Sangster, J. Polym. Sei. Polym. Lett. Ed., 20, 171 (1982).CrossRefGoogle Scholar
  28. 28.
    J.L. Baxendale and F.W. Mellows, J. Am. Chem, Soc., 83, 4720 (1961).CrossRefGoogle Scholar
  29. 29.
    G. Fletcher and J.L. Garnett, unpublished work.Google Scholar
  30. 30.
    W.J. Chappas and J. Silverman, J. Rad. Phys. Chem. 14, 847 (1979).ADSGoogle Scholar
  31. 31.
    M. Micks and L. Pazner, Divinyl copolymers. Part 1. J. Rad. Curing, 7(1), 16 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Chye H. Ang
    • 1
  • John L. Garnett
    • 1
  • Ronald G. Levot
    • 1
  • Mervyn A. Long
    • 1
  1. 1.School of ChemistryThe University of New South WalesKensingtonAustralia

Personalised recommendations