Biochemical Approaches to Monitoring Human Populations for Germinal Mutation Rates: II. Enzyme Deficiency Variants as a Component of the Estimated Genetic Risk

  • Harvey W. Mohrenweiser
Part of the Environmental Science Research book series (ESRH, volume 28)


The ultimate function of toxicology screening systems is to provide an accurate estimate of the human health risk associated with exposure to potentially hazardous agents. A number of test systems, with varying capabilities, have been developed and it has been proposed that combinations of several of these systems be utilized in a tier approach to estimating risk. The shortcomings of the various components of the tier system, including differences in metabolic pathways, target tissue specificity, cell replication, etc., have been discussed [1]. An additional problem is the lack of relevant data from human populations which may be used as a reference for extrapolation. That is, it is difficult to estimate human health risk utilizing data obtained in test systems in the absence of at least some data from a limited number of studies relating the nature and extent of exposure, the frequency of events induced and the associated increase in health costs in a human population. The absence of a data base is most apparent for germinal mutations, where except for genetic damage involving structural or numerical chromosomal abberations [2–4], the data on the frequency of possible mutagenic events, either spontaneous or induced, are very limited. Most previous estimates of the frequency of mutational events in human populations have utilized either the population characteristic or sentinel phenotype approach [5–7]. Recently, electrophoretic techniques have been developed which can be used to obtain data relevant to the estimation of both the background and induced mutation rate in human populations [8–10]. The current status of these electrophoretic methodologies is described by Neel et al., in a companion paper in this symposium [11].


Human Population Null Allele Pyruvate Kinase Human Health Risk Enzyme Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Committee 17, Environmental mutagenic hazards, Science, 187: 503–514 (1975).CrossRefGoogle Scholar
  2. 2.
    D. Z. Warburton, J. Stein, J. Kline, and M. Susser, in: “Human Embryonic and Fetal Death,” I. H. Porter and E. B. Hook, eds., pp. 261–287, Academic Press, New York (1980).Google Scholar
  3. 3.
    P. A. Jacobs, Mutation rates of structural chromosome rearrangements in man, Am. J. Hum. Genet., 33:44–54 (1981).Google Scholar
  4. 4.
    E. B. Hook, Contribution of chromosome abnormalities to human morbidity and mortality and some comments upon surveillance of chromosome mutation rates, Prog. Mutat. Res., 3:9–38 (1982).Google Scholar
  5. 5.
    F. Vogel, in: “Chemical Mutagenesis in Mammals and Man,” F. Vogel and G. Rohrborn, eds., pp. 16–68, Springer-Verlag, New York (1970).Google Scholar
  6. 6.
    F. Vogel and R. Rathenberg, Spontaneous mutations in man, Advan. Hum. Genet., 5:223–317 (1975).Google Scholar
  7. 7.
    J. V. Neel, The detection of increased mutation rates in human populations, Persp. Biol. Med., 522–537 (1971).Google Scholar
  8. 8.
    J. V. Neel, H. W. Mohrenweiser, and M. M. Meisler, Rate of spontaneous mutation at human loci encoding protein structure, Proc. Natl. Acad. Sci. USA, 77:6037–6041 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    J. V. Neel, C. Satoh, H. B. Hamilton, M. Otake, K. Goriki, T. Kagoeka, M. Fijita, S. Neriishi, and J. Asakawa, A search for mutations affecting protein structure in children of atomic bomb survivors: preliminary report, Proc. Natl. Acad. Sci. USA, 77:4221–4225 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    F. Vogel and K. Altland, Utilization of material from PKU-screening programs for mutation screening, Prog. Mutat. Res., 3:143–157 (1982).Google Scholar
  11. 11.
    J. V. Neel, H. Mohrenweiser, S. Hanash, B. Rosenblum, S. Sternberg, K. H. Wurzinger, E. Rothman, C. Satoh, K. Goriki, T. Krasteff, M. Long, M. Skolnick, and R. Krezesicki, Biochemical approaches to monitoring human populations for germinal mutation rates: I. Electrophoresis, (current proceedings).Google Scholar
  12. 12.
    H. Friedmann and S. M. Rapoport, in: “Cellular and Molecular Biology of Erythrocytes,” H. Yoshikawa, ed., pp. 181–259, University Park Press, Baltimore (1974).Google Scholar
  13. 13.
    A. J. Grimes and G. C. de Gruchy, in: “Blood and It’s Disorders,” R. M. Hardestry and D. J. Weatherald, eds., pp. 473–525, Blackwell, London (1974).Google Scholar
  14. 14.
    J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, in: “The Metabolic Basis of Inherited Diseases,” J. B. Stanbury, J. B. Wyngaarder, and D. S. Fredrickson, eds., pp. 2–31, Mraw Hill, New York (1978).Google Scholar
  15. 15.
    W. N. Valentine, Deficiencies associated with Embden-Meyerhof pathway and other metabolic pathways, Semin. in Hematol., 8: 348–366 (1971).Google Scholar
  16. 16.
    E. Beutler, Red cell enzyme defects as nondiseases and diseases, Blood, 54:1–7 (1979).Google Scholar
  17. 17.
    A. Kahn, J. C. Kaplan, and J. C. Dreyfus, Advances in hereditary red cell anomalies, Hum. Genet., 51:1–27 (1979).CrossRefGoogle Scholar
  18. 18.
    K. O. Raivio and J. E. Seegmiller, Genetic diseases of metabolism, Ann. Rev. Biochem., 41:543–576 (1972).CrossRefGoogle Scholar
  19. 19.
    S. Miwa, H. Fujii, S. Takegawa, T. Nakatsiui, K. Yamato, Y. Ishida, and N. Ninomiya, Seven pyruvate kinase variants characterized by the ICSH recommended methods, Brit. J. Haemat., 45, 576–583 (1980).CrossRefGoogle Scholar
  20. 20.
    J.-L. Vives-Corrons, H. Rubinson-Skala, M. Mateo, J. Estella, E. Feliu, and J.-C. Dreyfus, Triosephosphate isomerase deficiency with hemolytic anemia and severe neuromuscular disease. Familial and biochemical studies of a case in Spain, Hum. Genet., 42:171–180 (1978).CrossRefGoogle Scholar
  21. 21.
    A. G. L. Whitelaw, P. A. Rogers, D. A. Hopkinson, H. Gordon, P. M. Emerson, J. H. Darley, C. Reed, and M. A. Crawford, Congenital haemolytic anaemia resulting from glucosephosphate isomeriase deficiency: genetics, clinical picture and prenatal diagnosis, J. Med. Genet., 16:189–196 (1979).CrossRefGoogle Scholar
  22. 22.
    H. W. Mohrenweiser and J. Novotny, An enzymatically inactive variant of human lactate dehydrogenase-LDH B GUA-1: Study of subunit interaction, Biochem. Biophys. Acta, 702:90–98 (1982).CrossRefGoogle Scholar
  23. 23.
    H. W. Mohrenweiser, Frequency of enzyme deficiency variants in erythrocytes of newborn infants, Proc. Natl. Acad. Sci. USA, 78:5046–5050 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    H. W. Mohrenweiser, Frequency of rare enemy deficiency variants: Search for mutational events with human health implications, Prog. Mutat. Res., 3:159–162 (1982).Google Scholar
  25. 25.
    A. Morelli, U. Benatti, G. F. Gaetami, and A. DeFlora, Biochemical mechanisms of glucose 6-phosphate dehydrogenase deficiency, Proc. Natl. Acad. Sci. USA, 75:1979–1983 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    J. V. Neel, H. W. Mohrenweiser, C. Satoh, and H. B. Hamilton, in: “Genetic Damage in Man Caused by Environmental Agents,” K. Borg, ed., pp. 29–47, Academic Press, New York (1979).Google Scholar
  27. 27.
    S. Fielek and H. W. Mohrenweiser, Erythrocyte enzyme deficiencies assessed with a miniature centrifugal analyzer, Clin. Chem., 205:384–388 (1979).Google Scholar
  28. 28.
    H. Mohrenweiser and S. Fielek, Elevated frequency of carriers for triosephosphate isomerase deficiency in newborn infants, Ped. Res., 16:960–963 (1982).CrossRefGoogle Scholar
  29. 29.
    C. Satoh, A. A. Awa, J. V. Neel, W. J. Schull, H. Kato, H. B. Hamilton, M. Otake, and K. Goriki, Genetic effects of atomic bombs, Proc. Int. Cong. Human Genet., in press (1982).Google Scholar
  30. 30.
    S. W. Eber, B. H. Belohradsky, and W. K. G. Krietsch, A case for triosephosphate isomerase testing in congential nonspherocytic hemolytic anemia, J. Pediat., in press (1983).Google Scholar
  31. 31.
    S. W. Eber, M. Dunnwald, B. H. Belshradsky, F. Bidlingmaier, H. Schievelbein, H. M. Weinman, and W. K. G. Krietsch, Hereditary deficiency of triosephosphate isomerase in four unrelated families, Eur. J. Clin. Investig., 9:195–202 (1979).CrossRefGoogle Scholar
  32. 32.
    W. K. G. Krietsch, H. Krietsch, W. Kaiser, M. Dunnwald, G. Kuntz, I. Duhm, and T. Bucher, Hereditary deficiency of phosphoglycerate kinase: a rare variant in erythrocytes and leucocytes not associated with haemolytic anaemia, Eur. J. Clin. Investig., 7:427–425 (1977).CrossRefGoogle Scholar
  33. 33.
    H. Harris, D. A. Hopkinson, and E. B. Robson, The incidence of rare alleles determining electrophoretic variants: data on 43 enzyme loci in man, Ann. Hum. Genet. (Lond.), 37:237–253 (1974).CrossRefGoogle Scholar
  34. 34.
    P. T. Wade-Cohen, G. S. Omenn, A. G. Motulsky, S. H. Chen, and E. R. Giblett, Restricted variation in the glycolytic enzymes of human brain and erythrocytes, Nature, 241:229–233 (1973).CrossRefGoogle Scholar
  35. 35.
    H. W. Mohrenweiser and J. V. Neel, Frequency of thermostability variants: Estimation of total “rare” variant frequency in human populations, Proc. Natl. Acad. Sci. USA, 78:5729–5783 (1981).ADSCrossRefGoogle Scholar
  36. 36.
    C. H. Langley, R. A. Voelker, A. J. Leigh-Brown, S. Ohnishi, B. Dickson, and E. Montgomery, Null allele frequency at allozyme loci in natural populations of Drosophila melanogaster, Genetics, 99:151–156 (1981).Google Scholar
  37. 37.
    R. A. Voelker, C. H. Langley, A. J. Leigh-Brown, S. Ohnishi, B. Dickson, E. Montgomery, and S. C. Smith, Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population, Proc. Natl. Acad. Sci. USA, 77:1091–1095 (1980).ADSCrossRefGoogle Scholar
  38. 38.
    T. Mukai and C. C. Cockerham, Spontaneous mutation rates at enzyme loci in Drosophilia melanogaster, Proc. Natl. Acad. Sci. USA, 74:2514–2517 (1977).ADSCrossRefGoogle Scholar
  39. 39.
    R. A. Voelker, H. E. Scheffer, and T. Mukai, Spontaneous allozyme mutations in Drosophilia melanogaster: Rate of occurrence and nature of the mutants, Genetics, 94:961–968 (1980).Google Scholar
  40. 40.
    W. Prestsch and D. Charles, in: “Electrophoresis 1979: Adv. Methods, Biochemical Clinical Appl.” B. J. Radola, ed., pp. 817–824, DeGruyter, Berlin (1980).Google Scholar
  41. 41.
    F. M. Johnson and S. E. Lewis, Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea, Proc. Natl. Acad. Sci. USA, 78:3138–3141 (1981).ADSCrossRefGoogle Scholar
  42. 42.
    W. L. Russell and E. M. Kelly, Specific locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, Proc. Natl. Acad. Sci. USA, 79:539–542 (1982).ADSCrossRefGoogle Scholar
  43. 43.
    A. G. Searle, Mutation induction in mice, Adv. Radiat. Biol., 4:131–207 (1974).Google Scholar
  44. 44.
    L. B. Russell, Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations, Mutat. Res., 11:107–123 (1971).CrossRefGoogle Scholar
  45. 45.
    L. B. Russell, W. L. Russell, and E. M. Kelly, Analysis of the albino-locus region of the mouse, Genetics, 91:127–139 (1979).Google Scholar
  46. 46.
    R. R. Racine, C. H. Langley, and R. A. Voelker, Enzyme mutants induced by low-dose-rate y-irradiation in Drosophila: Frequency and characterization, Environ. Mutagen., 2:167–177 (1980).CrossRefGoogle Scholar
  47. 47.
    L. B. Russell, W. L. Russell, R. A. Popp, C. Vaughan, and K. B. Jacobson, Radiation-induced mutations at mouse hemoglobin loci, Proc. Natl. Acad. Sci. USA, 73:2843–2846 (1976).ADSCrossRefGoogle Scholar
  48. 48.
    H. V. Mailing, and L. R. Valcovic, Biochemical specific locus mutation system in mice, Arch. Toxicol., 38:45–51 (1977).CrossRefGoogle Scholar
  49. 49.
    W. L. Russell, Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women, Proc. Natl. Acad. Sci. USA, 74:3523–3527 (1977).ADSCrossRefGoogle Scholar
  50. 50.
    F. M. Johnson, G. T. Roberts, R. K. Sharma, F. Chasalow, R. Zweidinger, A. Morgan, R. W. Hendren, and S. E. Lewis, The detection of mutants in mice by electrophoresis: Results of a model induction experiment with procarbazine, Genetics, 97: 113–124 (1981).Google Scholar
  51. 51.
    E. R. Soares, TEM-Induced gene mutations at enzyme loci in the mouse, Environ. Mutagen., 1:19–25 (1979).MathSciNetCrossRefGoogle Scholar
  52. 52.
    J. B. Bishop and R. J. Feuers, Development of a new biochemical mutations test in mice based upon measurement of enzyme activities II. Test results with ethyl methanesulfonate (EMS), Mutat. Res., 95:273–285 (1982).CrossRefGoogle Scholar
  53. 53.
    W. L. Russell, E. M. Kelly, P. P. Hunsicker, J. W. Bangham, S. C. Maddux, and E. L. Phipps, Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse, Proc. Natl. Acad. Sci. USA, 76:5818–5819 (1979).ADSCrossRefGoogle Scholar
  54. 54.
    J. V. Neel, Mutation and disease in man, Canad. J. Genet, and Cytol., 20:295–306 (1978).Google Scholar
  55. 55.
    C. O. Carter, Contribution of gene mutations to genetic disease in humans, Prog. Mutat. Res., 3:1–8 (1982).Google Scholar
  56. 56.
    C. O. Carter, in: “Prog. Genetic Toxicol.” D. Scott, B. A. Bridges and F. H. Sobels, eds., pp. 1–14, Elsevier/North Holland Press, Amsterdam (1977).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Harvey W. Mohrenweiser
    • 1
  1. 1.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations