Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 28))

  • 67 Accesses

Abstract

The specific locus method for determining mutagenicity in vivo has been used very successfully for over 30 years and doubtless will continue to be used for many years to come. It has the great advantage of giving clear-cut results in the F1 generation. Another advantage in my opinion is that it can be treated as a kind of “basic kit” to which all sorts of other useful tests and analyses of the F1 generation can be added on. These include searches for various kinds of dominant mutation, or for specific biochemical defects, as well as fertility tests to look for the presence of translocations or other chromosome anomalies. Thus, by building on to this one test, some idea of the nature and magnitude of the extra genetic load associated with particular mutagenic exposure can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Foster, Mammalian pigment genetics, Adv. Genetics, 13:311–339 (1965).

    Article  Google Scholar 

  2. R. W. Melvold, Spontaneous reversion in mice: effects of parental genotype on stability at the P-locus, Mutation Res., 12:171–174 (1971).

    Article  Google Scholar 

  3. N. A. Jenkins, N. G. Copeland, B. A. Taylor, and B. K. Lee, Dilute (d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuVL genome, Nature, 293:370–374 (1981).

    Article  ADS  Google Scholar 

  4. L. B. Russell, Definition of functional units in a small chromosome segment of the mouse and its use in interpreting the nature of radiation-induced mutations, Mutation Res., 11:107–123 (1971).

    Article  Google Scholar 

  5. L. B. Russell and W. L. Russell, Genetic analysis of induced deletions and of spontaneous non-disjunction involving chromosome 2 of the mouse, J. Cell. Comp. Physiol., 56, Suppl. 1, 169–188 (1960).

    Article  Google Scholar 

  6. A. G. Searle and C. V. Beechey, Complementation studies with mouse translocations, Cytogenet. Cell Genet., 20:282–303 (1978).

    Article  Google Scholar 

  7. A. G. Searle, Mutation induction in mice, Adv. Radiation Biol., 4:131–207 (1974).

    Google Scholar 

  8. M. C. Green, Genetic Variants and Strains of the Laboratory Mouse, Gustav Fischer Verlag, Stuttgart and New York (1981).

    Google Scholar 

  9. A. L. Batchelor, R. J. S. Phillips, and A. G. Searle, A comparison of the mutagenic effectiveness of chronic neutron- and γ-irradiation of mouse spermatogonia, Mutation Res., 3:218–229 (1966).

    Article  Google Scholar 

  10. W. L. Russell and L. B. Russell, The genetic and phenotypic characteristics of radiation-induced mutations in mice, Radiation Res., Suppl. 1, 296–305 (1959).

    Google Scholar 

  11. K. G. Luning, Do recessive lethals have dominant deleterious effects in mice? Mutation Res., 3:340–345 (1966).

    Article  Google Scholar 

  12. M. F. Lyon and T. Morris, Mutation rates at a new set of specific loci in the mouse, Genet. Res., Camb., 7:12–17 (1966).

    Article  Google Scholar 

  13. G. Schlager and M. M. Dickie, Natural mutation rates in the house mouse: estimates for five specific loci and dominant mutations, Mutation Res., 11:89–96 (1971).

    Article  Google Scholar 

  14. T. Nomura, Changed urethan and radiation response of the mouse germ cell to tumor induction, in: “Tumors of Early Life in Man and Animals,” L. Severi, ed., Perugia Quadrennial Int. Cong, on Cancer, Perugia, Italy, pp. 873–891 (1979).

    Google Scholar 

  15. T. Nomura, Induction of heritable tumors and anomalies in mice by parental exposure to x-rays and chemicals, Nature, 296:575–577 (1982).

    Article  ADS  Google Scholar 

  16. M. Kirk and M. F. Lyon, Induction of congenital anomalies in offspring of female mice exposed to varying doses of x-rays, Mutation Res., 106:73–83 (1982).

    Article  Google Scholar 

  17. U. H. Ehling, Dominant mutations affecting the skeleton in off spring of x-irradiated male mice, Genetics, 54:1381–1389 (1966).

    Google Scholar 

  18. P. B. Selby and P. R. Selby, Gamma-ray induced dominant mutations that cause skeletal abnormalities in mice, I. Plan, summary of results and discussion, Mutation Res., 43:357–375 (1977).

    Article  Google Scholar 

  19. U. H. Ehling, J. Favor, J. Kratochvilova, and A. Neuhäuser-Klaus, Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea, Mutation Res., 92:181–192 (1982).

    Article  Google Scholar 

  20. M. F. Lyon, Problems of extrapolation of animal data to humans this symposium.

    Google Scholar 

  21. R. B. Flavell, in: “Chromosomes Today,” M. D. Bennett, M. Bobrow, and G. M. Hewitt, eds., Vol. 7, pp. 42–54, Allen and Unwin, London (1981).

    Google Scholar 

  22. M. F. Lyon and T. Morris, Gene and chromosome mutation after large fractionated or unfractionated radiation doses to mouse spermatogonia, Mutation Res., 8:191–198 (1969).

    Article  Google Scholar 

  23. L. B. Russell and M. H. Major, Radiation-induced presumed somatic mutations in the house mouse, Genetics, 42:161–175 (1957).

    Google Scholar 

  24. W. L. Bigbee, W. E. Branscomb, and R. H. Jensen, Counting of RBC variants using rapid flow techniques, this symposium.

    Google Scholar 

  25. A. G. Searle and D. Stephenson, An in vivo method for the detection of somatic mutations at the cellular level in mice, Mutation Res., 92:205–215 (1982).

    Article  Google Scholar 

  26. W. K. Silvers, The Coat Colors of Mice, Springer-Verlag, New York (1979).

    Book  Google Scholar 

  27. H. I. Kohn, X-ray mutagenesis: results with the H-test compared with others and the importance of selection and repair, Genetics, 92:863–866 (1979).

    Google Scholar 

  28. I. K. Egorov and Z. K. Blandova, Histocompatibility mutations in mice, Chemical induction and linkage with the H-2 locus, Genet. Res., 19:133–143 (1972).

    Article  Google Scholar 

  29. H. I. Kohn, H-gene (histocompatibility) mutations induced by triethylenemelamine in the mouse, Mutation Res., 20:235–242 (1973).

    Article  Google Scholar 

  30. R. B. Flavell, in: “Chromosomes Today,” M. D. Bennett, M. Bobrow, and G. M. Hewitt, eds., Vol. 7, pp. 42–54, Allen and Unwin, London (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Searle, A.G. (1983). Some Ideas on Future Test Systems. In: de Serres, F.J., Sheridan, W. (eds) Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk. Environmental Science Research, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3739-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3739-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3741-6

  • Online ISBN: 978-1-4613-3739-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics