Crystal Growth and Phase Formation

  • K. A. Jackson
Part of the NATO Conference Series book series (SNS, volume 8)


Crystal growth usually occurs by a first order phase change: that is, a phase change in which the two phases co-exist and the transformation proceeds by the motion of an interface between them. The interface can traverse the sample substantially at a single temperature and so the finite heat which is released at this temperature results in an infinite specific heat. By contrast, transformations of higher orders are, in general, homogeneous in space. For example, an “ordering” transformation proceeds uniformly throughout a volume, and over a finite temperature interval, so the specific heat remains finite.


Crystal Growth Amorphous Phase Arrival Rate Ising Model Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aziz, M. (1982), J. Appl. Phys. 53, 1158.ADSCrossRefGoogle Scholar
  2. Baeri, P., Foti, G., Poate, J. M., Campisano, S. U., Cullis, A. G. (1981), Appl. Phys. Lett. 38, 800.ADSCrossRefGoogle Scholar
  3. Baeri, P., Campisano, S. U., Grimaldi, M. G. and Rimini, E. (1980) “Laser and Electron Beam Processing of Materials,” (ed. C. W. White and P. S. Peercy ), Academic Press NY, p. 131.Google Scholar
  4. Bagley, B. G. and Chen, H. S. (1979) “Laser-Solid Interactions and Laser Processing,” (ed. S. D. Ferris, H. J. Leamy, J. M. Poate), AlP Proc. 50, p. 97.Google Scholar
  5. Baker, J. C. and Cahn, J. W. (1971). Solidification, ASM Metals, Park, Ohio, p. 23.Google Scholar
  6. Broughton, J. Q., Gilmer, G. H. and Jackson, K. A. (1982), to be published.Google Scholar
  7. Buene, L., Poate, J. M., Jacobson, D. C., Draper, C. W. and Hirvonen, J. K. (1980) Appl. Phys. Lett. 37, 385.ADSCrossRefGoogle Scholar
  8. Buene, L., Jacobson, D. C. Nakahara, S., Poate, J. M., Draper, C. W. and Hirvonen, J. K. (1982) “Laser and Electron-Beam Solid Interactions” (ed. J. F. Gibbons, L. D. Hess and T. W. Sigmon) North-Holland, N.Y., p. 583.Google Scholar
  9. Burton, W. K., Cabrerra and Frank, F. C., Phil. Trans. Roy. Soc. (1951) A243, 249.MathSciNetADSGoogle Scholar
  10. Chalmers, B. (1964) “Principles of Solidification,” John Wiley and Sons, p. 103, 154.Google Scholar
  11. Csepregi, E. F., Kennedy, T. J., Gallagher, T. J., Mayer, J. W., Sigmon, T. W. (1977), J. Appl. Phys. 48, 4234.ADSCrossRefGoogle Scholar
  12. Cullis, A. G., Hurle, D. T. J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P., Foti, G. (1981) Appl. Phys. Lett. 38, 642.ADSCrossRefGoogle Scholar
  13. Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M. and Baeri, P. (1982) Phys. Rev. Lett. 49, 219.ADSCrossRefGoogle Scholar
  14. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D. C. (1982) to be published.Google Scholar
  15. Draper, C. W., Buene, L., Poate, J. M. and Jacobson, D. C. (1981) Applied Optics 20, 1730.ADSCrossRefGoogle Scholar
  16. Frenkel, J., (1932). Physik. Z. Sowjetunion 1, 498.MATHGoogle Scholar
  17. Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N., Peercy, P. S. (1982) Phys. Rev. Lett. 47, 33.ADSCrossRefGoogle Scholar
  18. Gibbs, J. W. (1877–78) reprinted in J. W. Gibbs “The Scientific Papers” Vol. I, p. 325, Dover, N.Y., 1961.Google Scholar
  19. Gilmer, G. H. and Jackson, K. A. (1977) “Crystal Growth and Materials,” ed. E. Kaldis and H. J. Scheel, North-Holland p. 79.Google Scholar
  20. Gilmer, G. H. (1982) to be published.Google Scholar
  21. Gilmer, G. H. (in course of publication).Google Scholar
  22. Gilmer, G. H. and Leamy, H. J. (1980) “Laser and Electron Beam Processing of Materials,” Academic Press, N.Y., p. 227.Google Scholar
  23. Haessner, F. and Seitz, W. (1971). J. Mater. Sci. 6.Google Scholar
  24. Hertz, H., Ann. Phys. (1882) 17, 177.CrossRefGoogle Scholar
  25. Jackson, K. A. (1958), “Liquid Metal and Solidification,” ASM Cleveland, 1958, p. 174; “Growth and Perfection of Crystals,” ed. R. H. Doremus, B. W. Roberts, D. Turnbull, Wiley and Sons, N.Y., p. 319.Google Scholar
  26. Jackson, K. A. (1967) “Progress in Solid State Chemistry,” Vol. 4, Pergamon Press, ed. H. Reiss, p. 53.Google Scholar
  27. Jackson, K. A., Uhlmann, D. R. and Hunt, J. D. (1967). J. Cryst. Growth 1, I.CrossRefGoogle Scholar
  28. Jackson, K. A., Gilmer, G. H., Leamy, H. J. (1980) “Laser and Electron Beam Processing of Materials,” (ed. C. W. White and P. S. Peercy ), Academic Press, N.Y., p. 104.CrossRefGoogle Scholar
  29. Knudsen, M., Ann. Phys. (1909) 29, 179.CrossRefGoogle Scholar
  30. Kossel, W. (1927), Nachr. Ges. Wiss. Giittingen p. 135.Google Scholar
  31. Leamy, H. J., Gilmer, G. H. and Jackson, K. A. (1 975) “Surface Physics of Materials I” (ed. J. B. Blakeley) Academic Press, N.Y., p. 121.Google Scholar
  32. Liu, P. L., Yen, R., Bloembergen, N. and Hodgson, R. T. (1979). Appl. Phys. Lett. 34, 864.ADSCrossRefGoogle Scholar
  33. Metz, S. A. and Smith, F. A. (1971). Appl. Phys. Lett. 19, 207.ADSCrossRefGoogle Scholar
  34. Mullins, W. W. and Sekerka, R. F. (1964). J. Appl. Phys. 35, 444.ADSCrossRefGoogle Scholar
  35. Musal, H. M., Jr., (1979) Symp. on Optical Materials for High Power Lasers, Boulder, Colorado.Google Scholar
  36. Porteus, J. O., Soileau, M. J. and Fountain, C. W. (1976). Appl. Phys. Lett. 29, 156.ADSCrossRefGoogle Scholar
  37. Ruhl, W. and Hilsch, P. (1977). Z. Phys. B26, 161.Google Scholar
  38. Spaepen, F., Turnbull, D., (1979) “Laser-Solid Interactions and Laser Processing,” AIP Proc. 50, p. 73.ADSCrossRefGoogle Scholar
  39. Stranski, I. N. (1928). Z. Phys. Chern. 136, 259.Google Scholar
  40. Tiller, W. A., Jackson, K. A., Rutter, J. W. and Chalmers, B. (1953). Acta. Met. 1, 428.CrossRefGoogle Scholar
  41. Tsu, R., Hodgson, R. T., Tan, T. Y. and Baglin, J. E. (1979). Phys. Rev. Lett. 42, 1356.ADSCrossRefGoogle Scholar
  42. Van DerSteenhoven, G. and Gilmer, G. H. (to be published).Google Scholar
  43. Vergano, P. J. and Uhlmann, D. R. (1969), “Reactivity of Solids,” (ed. J. W. Mitchell, R. C. DeVries, R. W. Roberts and P. Cannon) J. Wiley and Sons, N.Y., p. 713.Google Scholar
  44. Volmer, M. and Flood, H., (1934), Z. Physik. Chern. (Leipzig) A170, 273.Google Scholar
  45. Walker, J. L. (1964), p. 114 in Chalmers (1964).Google Scholar
  46. Weeks, J. D. and Gilmer, G. H., (1919), Adv. Chem. Phys., 40, 151.Google Scholar
  47. White, C. W., Wilson, S. R., Appleton, B. R., Young, Jr., F. W. (1980) J. Appl. Phys. 51, 138.Google Scholar
  48. Wilson, H. A., Phil. Mag. (1900) 50, 238.MATHGoogle Scholar
  49. Wood, R. F., (1980), Appl. Phys. Lett. 37, 302ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. A. Jackson
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations