Advertisement

Factors Influencing the Low-Temperature Dependence of Yielding in AISI 316 Stainless Steels

  • R. L. Tobler
  • D. H. Beekman
  • R. P. Reed

Abstract

The mechanical behavior of the AISI 300 series austenitic stainless steels over a broad range of temperatures is a subject of interest to designers of superconducting and nuclear energy devices. In this paper, factors influencing the initial yielding and stressstrain behavior of AISI 316 stainless steel are described. AISI 316 stainless steel is a metastable FeI6-18Cr, 10-14Ni, 1Mo steel that may undergo a partial austenite-to-martensite phase transformation during deformation at low temperatures, the probability of which increases with increasing strain, decreasing temperature, and decreasing alloy content.

Keywords

Yield Strength Plastic Strain Martensitic Transformation Austenitic Stainless Steel Stack Fault Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Read, D. T., Reed, R. P., and Schramm, R. E., Low temperature deformation of Fe-18Cr-8Ni steels, in: Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures-II, F. R. Fickett and R. P. Reed, eds., NBSIR 79-1609, National Bureau of Standards, Boulder, Colorado (June 1979), pp 151 - 172.Google Scholar
  2. 2.
    Reed, R. P. and Mikesell, R. P., The stability of austenitic stainless steels at low temperatures as determined by magnetic measurements, in: Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1960), pp. 84 - 100.Google Scholar
  3. 3.
    Larbalestier, D. C. and King, H. W., Austenitic stainless steels at cryogenic temperatures I, structural stability and magnetic properties, Cryogenics 13: 160 - 168 (1973).CrossRefGoogle Scholar
  4. 4.
    Tobler, R. L., Reed, R. P., and Burkhalter, D. S., Temperature dependence of yielding in austenitic stainless steels, in: Advances in Cryogenic Engineering, Vol. 26, Plenum Press, New York (1980), pp. 107 - 113.Google Scholar
  5. 5.
    Sanderson, G. P. and Llewellyn, D. T., Mechanical properties of standard austenitic stainless steels in the temperature range -196 to +800C, J. Iron Steel Inst. 207: 1129 - 1140 (1969).Google Scholar
  6. 6.
    Read, D. T. and Reed, R. P., Fracture and strength properties of selected austenitic stainless steels at cryogenic temperatures, Cryogenics 21: 415 - 417 (1981).CrossRefGoogle Scholar
  7. 7.
    Baughman, R. A., Gas atmosphere effects on materials, Progress Report #2, AF 33(616), General Electric Co., Schenectady, New York (November 1958).Google Scholar
  8. 8.
    Tobler, R. L., Mikesell, R. P., Durcholz, R. L., Fowlkes, c. W., and Reed, R. P., Fatigue and Fracture Toughness Testing at Cryogenic Temperatures, NBSIR 74-359, National Bureau of Standards, Boulder, Colorado (March 1974), pp. 182 - 308.Google Scholar
  9. 9.
    Hoke, J. H., Mabus, P. G., and Goller, G. N., Mechanical properties of stainless steels at subzero temperatures, Met. Prog. 55: 643 - 648 (1949).Google Scholar
  10. 10.
    Ilyichev, V. Ya., Medvedev, Ya. M., Shapovaliev, I. A., and Klimenko, I. N., Low temperature anomaly of the temperature dependence at the flow stresses in iron-chromium-nickel alloys, Phys. Met. Metallogr. 44 (1): 173 - 176 (1978).Google Scholar
  11. 11.
    Verkin, B. I., Ilyichev, V. Ya., and Klimenko, I. M., The low-temperature change of the magnetic structure and plastic properties of Fe-Cr-Ni alloys, in: Advances in Cryogenic Engineering, Vol. 26, Plenum Press, New York (1980), pp. 120 - 125.Google Scholar
  12. 12.
    Suzuki, T., Kojima, H., Suzuki, K., Hashimoto, T., and Ichichara, M., An experimental study of the martensite nucleation and growth in 18/8 stainless steel, Acta Metall., 23: 1151 - 1162 (1972).Google Scholar
  13. 13.
    Reed, R. P. and Guntner, C. J., Stress-induced martensitic transformations in 18Cr-8Ni steel, Trans. AIME, 230: 1713 - 1720 (1969).Google Scholar
  14. 14.
    Olson, G. B. and Azrin, M., Transformation behavior of TRIP steels, Metall. Trans. A, 9A: 713 - 721 (1978).Google Scholar
  15. 15.
    Ledbetter, H. M., Stainless-steel elastic constants at low temperatures, J. Appl. Phys. 52 (3): 1587 - 1589 (1981).CrossRefGoogle Scholar
  16. 16.
    Reed, R. P., A cryostat for tensile tests in the temperature range 300 to 4 K, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1961), pp. 448 - 454.Google Scholar
  17. 17.
    Sikka, V. K., Tensile and creep properties of type 316 stainless steels, paper CONF 78 1219-3 (N80-11212), presented at the UK/uKAEA Specialists Meeting on Mechanical Properties, Oak Ridge, Tennessee (Dec. 4, 1978 ).Google Scholar
  18. 18.
    Seeger, A., The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of FCC crystals, Philos. Mag., 46: 1194 - 1217 (1955).Google Scholar
  19. 19.
    Conrad, H., The cryogenic properties of metals, in: HighStrength Materials, V. F. Zackay, ed., Wiley, New York (1964), pp. 436 - 509.Google Scholar
  20. 20.
    Moore, T. D., Structural Alloys Handbook, Vol. 2, Battelle's Columbus Laboratories, Columbus, Ohio (1980).Google Scholar
  21. 21.
    Yaroshevich, V. D. and Ryvkina, D. G., Thermal-activation nature of plastic deformation in metals, Sov. Phys.-Solid State (Engl. Transl.) 12 (2): 363 - 370 (1970).Google Scholar
  22. 22.
    Rhodes, C. G. and Thompson, A. W., The composition dependence of stacking fault energy in austenitic stainless steels, Metall. Trans. 8A: 1901 - 1906 (1977).Google Scholar
  23. 23.
    Larbalestier, D. C. and King, H. W., Prediction of the low temperature stability of type 304 stainless steel from a room temperature deformation test, in: Proceedings of the Fourth International Cryogenic Engineering Conference, K. Mendelssohn, ed., IPC Science and Technology Press, Guildford, Surrey, England (1975), pp. 338 - 340.Google Scholar
  24. 24.
    Williams, I., Williams, R. G., and Capellaro, R. C., Stability of austenitic stainless steels between 4 K and 373 K, in: Proceedings of the Sixth International Cryogenic Engineering Conference, ed., K. Mendelssohn, IPC Science and Technology Press, Guildford, Surrey, England (1976), pp. 337 - 341.Google Scholar
  25. 25.
    Warnes, L. A. and King, H. W., The low temperature magnetic properties of austenitic Fe-Cr-Ni alloys 2, the prediction of Nickel temperatures and maximum susceptibilities, Cryogenics 16 (11): 659 - 667 (1976).CrossRefGoogle Scholar
  26. 26.
    Guntner, C. J. and Reed, R. P., The effect of experimental variables including the martensitic transformation on the low temperature mechanical properties of austenitic stainless steels, Trans. Am. Soc. Met., 55: 339 - 419 (1962).Google Scholar
  27. 27.
    Starr, C. D., Notes on the plastic critical temperature in strain induced martensite reaction, Trans. AIME 197: 654 (1953).Google Scholar
  28. 28.
    Norstrom, L. A., The influence of nitrogen and grain size on ield strength in Type 316L austenitic stainless steel, Met. Sci. 11: 208 - 212 (1977).Google Scholar
  29. 29.
    Collings, E. W. and Ledbetter, H. M., Sound velocity anomalies near the spin glass transition in an austenitic stainless steel alloy, Phys. Lett. 72A (I): 53 - 56 (1979).CrossRefGoogle Scholar
  30. 30.
    Ledbetter, H. M. and Collings, E. W., Low-temperature magnetic and elastic-constant anomalies in three manganese stainless steels, in: The Metal Science of Stainless Steels, E. W. Collings and H. W. King, eds., Met Soc. AIME, New York (1978), pp. 22 - 38.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. L. Tobler
    • 1
  • D. H. Beekman
    • 1
  • R. P. Reed
    • 1
  1. 1.Fracture and Deformation DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations