The Effect Of δ-Ferrite Upon the Low Temperature Mechanical Properties of Centrifugally Cast Stainless Steels

  • K. S. Lee
  • David Dew-Hughes


Stainless steels, in wrought form, are well-established as constructional materials for low temperature use. Austenitic steels in particular have mechanical strength, toughness and stability at temperatures down to the liquid helium regime, and are consequently specified for use as the main load-bearing comr ponents of devices, such as magnets, which utilise the phenomenon of superconductivity. The low temperature properties of a va(ietr of wrought stainless steels have been thoroughly investigated 1-6. Cast materials have not yet found such wide application in low temperature environments, and their low temperature properties have not been subjected to the same scrutiny. Casting alloys were evaluated by Goodzeit(7) for use in the Brookhaven 80-inch liquid hydrogen bubble chamber.


Fracture Toughness Weld Metal Ferrite Content Stainless Steel Weld Metal Residual Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Colbeck, E. W. McGillivray and W. R. D. Manning, Trans. lnst. Chem. Eng. 11: 89 (1933).Google Scholar
  2. 2.
    W. J. de Hass and R. A. Hadfield, R.y. Soc. Phil. Trans. A 232: 297 (1933).Google Scholar
  3. 3.
    V. N. Krivobok, “Properties of Austenitic Stainless Steels at Low Temperatures” NBS Circular 520, (1952).Google Scholar
  4. 4.
    D. A. Wigley, “Mechanical Properties of Materials at Low Temperatures” Plenum Press, New York (1971).Google Scholar
  5. 5.
    Handbook on Maaterials for Superconducting Machinery, MCICHB- 04, Battelle Co1ombus Laboratories, Columbus, Ohio 1975, Section 8.Google Scholar
  6. 6.
    F. R. Fickett, Proc. 6th Int. Cryogenics Eng. Conf.:20, IPC Surrey (1976).Google Scholar
  7. 7.
    C. L. Goodzeit, Advances in Cryogenic Eng. 10: 26 (1965).Google Scholar
  8. 8.
    J. W. Juppen1atz, Iron Age:147 (Sept. 4 1952 ).Google Scholar
  9. 9.
    G. Mayer and K. Balajiva, Meta1lurgia: 221 (May 1959): 11 (Jan 1962).Google Scholar
  10. 10.
    E. R. Hall, in “Symposium on Evaluation of l1eta11ic l1ateria1s in Design for Low Temperature Service”STP 302:85 ASTM Philadelphia (1961).Google Scholar
  11. 11.
    E. R. Szumachowski and J. F. Reid, Welding Journal Research-Supplement. 57:325-8 (1978); 58:34-S (1979).Google Scholar
  12. 12.
    D. Dew-Hughes and K. S. Lee, Advances in Cryogenic Eng. 26: 151 (1981).Google Scholar
  13. 13.
    A. L. Schaeffler, Metal Progress 56: 180 (1949).Google Scholar
  14. 14.
    W. T. de Long, Metal Progress 77: 98 (1960).Google Scholar
  15. 15.
    E. Schoeffer, Welding Research 3–:10-S (1974).Google Scholar
  16. 16.
    E. L. Brown, T. A. Whipple and R. L. Tobler. Met. Trans. to be published.Google Scholar
  17. 17.
    R. L. Tobler, D. T. Read and R. P. Reed. Fracture Mechanisms, STP 743:250, ASTM Philadelphia (1981).Google Scholar
  18. 18.
    T. A. Whipple, private communication.Google Scholar
  19. 19.
    R. P. Reed and R. P.Mikesell Advances in Cryogenic Eng. 4: 84 (1960).Google Scholar
  20. 20.
    D. Larbalestier and H. W. King, Proc. 4th Int. Cryogenic Eng. Conf. IPC Surrey: 338 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. S. Lee
    • 1
  • David Dew-Hughes
    • 2
  1. 1.Department of Nuclear EnergyBrookhaven National Lab.USA
  2. 2.Department of Engineering ScienceOxford UniversityUK

Personalised recommendations