The Meaning of the Lunar Laser Ranging Experimental Results for Gravitational Theory

  • K. NordtvedtJr.
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 94)

Abstract

The theoretical significance for gravitation of the lunar laser ranging experimental results (see Alley, 1982, in this volume, for a summary of these and for additional references) can be stated at several different conceptual levels. These include:
  1. 1)

    a highly accurate Eötvüs experiment;

     
  2. 2)

    “Gravity pulls on gravity;”

     
  3. 3)

    measuring gravity’s non-linearity; and

     
  4. 4)

    confirming General Relativity’s post-Newtonian gravitational vector potential and full non-linear potential.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, C. O., 1982, Laser ranging to retro-reflectors on the moon as a test of theories of gravity, in “Quantum Optics, Experimental Gravitation, and Measurement Theory,” P. Meystre and M. O. Scully, Eds., Plenum, New York.Google Scholar
  2. Braginsky, V. B., and Panov, V. I., 1971, Verification of the equivalence of inertial and gravitational mass, Zh. Eksp. al Teor. Fiz. 61:873. English translation in Sov. Physics - JETP Lett. 10: 280 (1973).Google Scholar
  3. King, R. W., 1982, Private communication.Google Scholar
  4. Nordtvedt, K., 1968a, Equivalence principle for massive bodies. I. Phenomenology, Phys. Rev. 169: 1014–1017.Google Scholar
  5. Nordtvedt, K., 1968b, Equivalence principle for massive bodies. II. Theory, Phys. Rev. 169: 1017–1025.ADSCrossRefGoogle Scholar
  6. Nordtvedt, K., 1968c, Testing relativity with laser ranging to the moon, Phys. Rev. 170: 1186–1187.CrossRefGoogle Scholar
  7. Nordtvedt, K., 1971, Equivalence principle for massive bodies. IV. Planetary orbits and modified Eotvos type experiments, Phys. Rev., D3: 1683–1689.ADSGoogle Scholar
  8. Nordtvedt, K., 1976, Anisotrophic parameterized post-Newtonian gravitational metric field, Phys. Rev. D4: 1511–1517.Google Scholar
  9. Nordtvedt, K., 1982, The fourth test of general relativity, Rep. Prog. Phys. 45, No. 6: 631–651.MathSciNetADSCrossRefGoogle Scholar
  10. Nordtvedt, K., and Will, C. M., 1972, Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity, Astrophys. J., 177: 775–792.MathSciNetADSCrossRefGoogle Scholar
  11. Roll, P. G., Krotkov, R., Dicke, R. H., 1964, The equivalence of inertial and passive gravitational mass, Ann. Phys. ( N.Y. ), 26: 442–517.MathSciNetADSMATHCrossRefGoogle Scholar
  12. Will, C. M., 1971, Theoretical frame-works for testing relativistic gravity. II. Parameterized post-Newtonian hydrodynamics and the Nordtvedt effect, Astrophys. J. 163: 611–628.MathSciNetADSCrossRefGoogle Scholar
  13. Will, C. M., and Nordtvedt, K., 1972, Conservation laws and preferred frames in relativistic gravity. I. Preferred frame theories and an extended PPN formation, Astrophys. J., 177: 757–774.MathSciNetADSCrossRefGoogle Scholar
  14. Williams, J. G., 1982, Private communication.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • K. NordtvedtJr.
    • 1
  1. 1.BozemanUSA

Personalised recommendations