Some Remarks on the Interaction between Precision Physical Measurement and Fundamental Physical Theories

  • J. L. Hall
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 94)

Abstract

With our beginning students we make a big point about the scientific method — a short-leash feedback between observation, hypothesis generation and testing. New experiments lead to refinement of those hypotheses. With more advanced students we speak of physics as an empirical science, one completely based on experiment. We go to great lengths to bring students into contact with a representative sample of those contemporary experimental techniques. Still, in many ways the most important advances in physics are not made primarily with these means. Rather they arise from an inspired synthesis of a large number of smaller facts which can be unified by the adoption of the relatively simple overall principle. A few more logical (but giant!) steps in this direction bring on rare occasion a genius such as Einstein to unify and merge entire subjects, such as kinematics and electrodynamics. Basically no further experimental input is needed — only an inspired expansion of the accepted postulates and mathematical arguments to structure a new reality, i.e., a new way of looking at the natural world.

Keywords

Methane Quartz Anisotropy Mercury Platinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gravitational red shift of y rays; R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Lett. 4, 274 (1960)ADSCrossRefGoogle Scholar
  2. R. V. Pound and J. L. Snider, Phys. Rev. 140, B788 (1965).ADSCrossRefGoogle Scholar
  3. 2.
    Equivalence Principle via lunar laser ranging; J. G. Williams, R. H. Dicke, P. L. Bender, C. O. Alley, W. E. Carter, D. G. Currie, D. H. Eckhardt, J. E. Faller, W. M. Kaula, J. D. Mulholland, H. H. Plotkin, S. K. Poultney, P. J. Shelvs, E. C. Silverberg, W. S. Sinclair, M. A. Slade and D. T. Wilkinson, Phys. Rev. Lett. 36, 551 (1976); I. I. Shapiro, C. C. Counselman III and R. W. King, Phys. Rev. Lett. 36, 555 (1976).Google Scholar
  4. 3.
    Propagation delay of radio signals in a gravitational gradient, based on Mars-Viking Lander data; 0.2%; R. D. Reasenberg, I. I. Shapiro, P. E. McNeil, R. B. Goldstein, J. C. Breidenthal, J. P. Brenkle, D. L. Cain, T. M. Kaufman, T. A. Komarek and A. I. Zygielbaum, Astrophys. J. Lett. 234, L219 (1979).Google Scholar
  5. 4.
    Gravitational red shift of H maser frequency: R. C. Vessot and M. W. Levine, J. Gen. R.l. Grav. 10, 181 (1979).ADSCrossRefGoogle Scholar
  6. 5.
    Time-keeping in a rotating frame: J. C. Hafele and R. E. Keating, Science 177, 166 (1972).ADSCrossRefGoogle Scholar
  7. 6.
    G. F. Smoot, M. V. Gorenstein and R. A. Muller, Phys. Rev. Lett. 39, 898 (1977).ADSCrossRefGoogle Scholar
  8. 7.
    S. P. Boughn, E. S. Cheng and D. T. Wilkinson, Astrophys. J. 243, LI13 (1981).ADSCrossRefGoogle Scholar
  9. 8.
    M. Aaronson, J. Mould, J. Huchra, W. T. Sullivan III, R. A. Schommer and G. D. Bothun, Astrophys. J. 239, 12 (1980); J. P. Huchra, Proc. AAAS, Toronto, Jan. 1981.ADSCrossRefGoogle Scholar
  10. 9.
    H. G. Dehmelt, in Advances in Atomic and Molecular Physics, Vol. 5, ed. by D. R. Bates and I. Estermann ( Academic, New Yorks 1969 ), pp. 109–153.Google Scholar
  11. 10.
    D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc., Series II, 20, 637 (1975).Google Scholar
  12. 11.
    T. W. Hnsch and A. L. Schawlow, Opt. Comm. 13, 68 (1975).ADSCrossRefGoogle Scholar
  13. 12.
    J. L. Hall, in Atomic Physics 7, ed. by D. Kleppner and F. Pipkin ( Plenum, New York, 1981 ), pp. 267–296.Google Scholar
  14. 13.
    A. A. Michelson, Am. J. Sci. 38 181 (1889); also, see Studies in Optics (Univ. of Chicago Press, Chicago, 1927), p. 46.Google Scholar
  15. A. A. Michelson, Nature 49, 56 (1893)ADSCrossRefGoogle Scholar
  16. 14.
    S. N. Bagaev, L. S. Vasilenko, V. G. Goldort, A. K. Dmitriyev, A. S. Dychkov and V. P. Chebotayev, Sov. J. Quant. Electr. 7, 665 (1977)Google Scholar
  17. Appl. Phys. 13, 291 (1977).Google Scholar
  18. 15.
    V. P. Chebotayev, private communication.Google Scholar
  19. 16.
    N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikulchin, D. A. Tyurikov, V. N. Petrovskiy and E. D. Protscenko, in Proc. 1981 Int. Conf. on Precision Meas. and Fundamental Constants, ed. by B. N. Taylor, E. R. Williams and W. D. Phillips (U.S. Govt. Printing Office, in press).Google Scholar
  20. 17.
    J. L. Hall, L. Hollberg, T. Baer and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).ADSCrossRefGoogle Scholar
  21. 18.
    Ma Long Sheng, M. Hohenstatt and J. L. Hall, to be published.Google Scholar
  22. 19.
    These optical techniques have been developed independently by us and by G. C. Bjorklund, Opt. Lett. 5, 15 (1980). Equivalent modulation techniques were first used in the NMR domain by B. Smaller, Phys. Rev. 83, 812 (1951) and J. V. Acrivos, J. Chem. Phys. 36, 1097 (1962).Google Scholar
  23. 20.
    A. Brillet and J. L. Hall, Phys. Rev. Lett. 42, 549 (1979).ADSCrossRefGoogle Scholar
  24. 21.
    A. A. Michelson and E. W. Morley, Am. J. Sci. 34, 333 (1887).Google Scholar
  25. 22.
    T. S. Jaseja, A. Javan, J. Murray and C. H. Townes, Phys. Rev. 133, A1221 (1964).MathSciNetADSCrossRefGoogle Scholar
  26. 23.
    See lectures by C. M. Caves and W. G. Unruh in this volume.Google Scholar
  27. 24.
    P. L. Bender, J. E. Faller, private communication.Google Scholar
  28. 25.
    C. Will and K. Nordtvedt, Jr., Astrophys. J. 177, 757 (1972).MathSciNetADSCrossRefGoogle Scholar
  29. 26.
    M. P. Robertson, Rev. Mod. Phys. 2A, 378 (1949); H. P. Robertson and T. W. Noonan, Relativity and Cosmology ( Saunders, Philadelphia, 1968 ).Google Scholar
  30. 27.
    J. P. Cedarholm, G. F. Bland, B. L. Havens and C. H. Townes, Phys. Rev. Lett. 1, 342 (1958).ADSCrossRefGoogle Scholar
  31. 28.
    R. Mansouri and R. U. Sexl, three articles in J. Gen. Relat. and Gravit. 8 (1977), pp. 497–513, 515–524, 809–814.Google Scholar
  32. 29.
    J. G. Vargas, private communication, and submitted to Found. Phys.Google Scholar
  33. 30.
    Use of this trade name of the Schott Glasswerke, Mainz, West Germany is for technical communication only and does not con¬stitute endorsement of this product nor imply that similar products from other firms would necessarily be less suitable for our application.Google Scholar
  34. 31.
    R. W. P. Drever, J. Hough, A. J. Munley, S. A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brooks III and Y. Gursel, in Laser Spectroscopy V, ed. By A. R. W. McKellar, T. Oka and B. P. Stoicheff ( Springer- Verlag, Heidelberg, 1981 ), p. 33.Google Scholar
  35. 32.
    K. Maischberger, A. Rudiger, R. Schilling, L. Schnupp, W. Winkler and H. Billing, in Laser Spectroscopy V, op. cit., p. 25.Google Scholar
  36. 33.
    R. J. Kennedy and E. M. Thorndike, Phys. Rev. 42, 400 (1932).ADSCrossRefMATHGoogle Scholar
  37. 34.
    J. Levine and J. L. Hall, J. Geophys. Res. 77, 2595 (1972).ADSCrossRefGoogle Scholar
  38. 35.
    L. Hollberg, thesis work at the Univ. of Colo., under the author’s supervision.Google Scholar
  39. 36.
    G. R. Isaak, Phys. Bull. 21, 255 (1970).Google Scholar
  40. 37.
    H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938) and 31, 369 (1941).ADSCrossRefGoogle Scholar
  41. 38.
    P. Nachman, M. D. Rayman and J. L. Hall, in Precision Measurements and Fundamental Constants II, ed. by B. N. Taylor, E. Williams and W. Phillips (U. S. Govt. Printing Office, in press).Google Scholar
  42. 39.
    R. F. C. Vessot, Harvard Center for Astrophysics, Preprint #1030, “Relativity Experiments with Clocks” 1978.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. L. Hall
    • 1
  1. 1.Joint Institute for Laboratory Astrophysical, National Bureau of StandardsUniversity of ColoradoBoulderUSA

Personalised recommendations