Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 94))

Abstract

It is the goal of quantum communication theory to establish fundamental limits on the performance and sensitivity of optical communication and signal processing systems as imposed by quantum effects, often in conjunction with other unavoidable interference. The theory is widely applicable and not limited to optical systems although they provide the original and still the main impetus. Thus many aspects of quantum communication theory are broadly relevant to precision measurements including those of experimental general relativity, the subject of this Advanced Study Institute. In the following I will review the two main themes of quantum communication studies, namely the utilization of novel quantum measurements and quantum states, pursuing their relations to precision measurements and quantum nondemolition measurements (QND). The role of two-photon coherent states (TCS) will be emphasized. A limitation on QND will be indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. P. Yuen, Tech, Rept. 482, M.I.T. RLE (1971).

    Google Scholar 

  2. W. Louisell, Quantum Statistical Properties of Radiation, Wiley, (1973).

    Google Scholar 

  3. H. Takahashi, in Advances in Communication Systems, Vol. 1, A. Balakrishnan, Ed., Academic (1965).

    Google Scholar 

  4. H. P. Yuen, Phys. Rev. A13, 2226 (1976).

    ADS  Google Scholar 

  5. R. J. Glauber, in Laser Handbook, Vol. 1, E. J. Arecchi and E. O. Schulz-Bubois, Eds., ELsevier (1972).

    Google Scholar 

  6. E. Schroedinger, Naturwis. senschaften 14, 644 (1926).

    ADS  Google Scholar 

  7. E. H. Kennard, Z. Phys. 44, 326 (1927).

    Article  ADS  Google Scholar 

  8. W. Heisenberg, The Physical Principles of Quantum Theory, Dover, 1930.

    MATH  Google Scholar 

  9. O. W. Greenberg, Ann. Phys. 16, 158 (1961).

    Article  ADS  MATH  Google Scholar 

  10. P. W. Robinson, Commun. Math. Phys. 1, 159 (1965).

    Article  ADS  Google Scholar 

  11. F. A. Berezin, The Method of Second Quantization, Academic, 1966.

    MATH  Google Scholar 

  12. D. Stoler, Phys. Rev. D1, 3217 (1970).

    ADS  Google Scholar 

  13. D. Stoler, Phys. Rev. D1, 1925 (1971).

    ADS  Google Scholar 

  14. E. Y. C. Lu, Nuovo Cimento Lett. 2, 1241 (1971).

    Article  Google Scholar 

  15. E. Y. C. Lu, Nuovo Cimento Lett. 3, 585 (1972).

    Article  Google Scholar 

  16. H. P. Yuen and J. H. Shapiro, IEEE Trans. Inform. Theory 26, 78 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).

    Article  ADS  Google Scholar 

  18. E. Wigner, Phys Rev. 40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

  19. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, Benjamin (1968).

    Google Scholar 

  20. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover (1931).

    MATH  Google Scholar 

  21. H. P. Yuen and J. H. Shapiro, in Coherence and Quantum Optics L. Mandel and E. Wolf, Eds., p. 719, Plenum (1978).

    Google Scholar 

  22. H. P. Yuen, in Proc. 197 b Conf. Information Sciences and Systems, p. 171, John Hopkins Univ., (1975).

    Google Scholar 

  23. K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and D. Sandberg, Phys. Rev. Lett. 40, 667 (1978).

    Article  ADS  Google Scholar 

  24. J J. P. Gordon, Proc.IRE 50, 1898 (1962).

    Google Scholar 

  25. J J. P. Gordon, Proc.IRE 50, 1898 (1962).

    Google Scholar 

  26. G. D. Forney, Jr., S. M. Thesis, Dept. of Electrical Engineering, M.I.T. (1963).

    Google Scholar 

  27. J. P. Gordon, in Quantum Electronics and Coherent Light, P. A. Miles Ed., p. 156, Academic (1964).

    Google Scholar 

  28. C. W. Helstrom, Inform. Contr. 10, 254 (1967).

    Article  Google Scholar 

  29. C. W. Helstrom, J. W. S. Liu, and J. P, Gordon, Proc. IEEE j8, 1578 (1970). For a more updated review, see C. W. Helstrom, Quantum Detection and Estimation Theory, Academic (1976).

    Google Scholar 

  30. J. S. Baras, R. O. Harger, and Y. H. Park, IEEE Trans. Inform. Theory 22, 59 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. S. Baras and R. O. Harger, IEEE Trans. Inform. Theory 23, 683 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  32. C. W. Helstrom, IEEE Trans. Inform. Theory 14, 234 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. D. Personick, IEEE Trans. Inform. Theory 17, 240 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Arthurs and J. L. Kelly, Jr., Bell Syst. Tech. J. 44, 725 (1965).

    Google Scholar 

  35. D. Bohm, Quantum Theory, Ch. 22, Prentice-Hall (1951).

    Google Scholar 

  36. J. Von Neumann, Mathematical Foundations of Quantum Mechanics, Ch. VI, Princeton Univ. (1955).

    Google Scholar 

  37. R. M. Gagliardi and S. Karp, Optical CommunicationsCh. 6, Wiley (1976).

    Google Scholar 

  38. H. P. Yuen, R. S. Kennedy, and M. Lax, Proc. IEEE 58, 1770 (1970). In this work we specified the optimum quantum measurement for M-ary hypothesis testing by using equation (40) without knowing that (40) always represents a quantum measurement.

    Google Scholar 

  39. H. P. Yuen, R. S. Kennedy, and M. Lax, IEEE Trans. Intorm. Theory 21, 125 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  40. H. P. Yuen and M. Lax, IEEE Trans. Inform. Theory 19, 740 (1973).

    Google Scholar 

  41. E. B. Davis, J. Functional Anal. 6, 318 (1970).

    Article  Google Scholar 

  42. E. B. Davis and J. T. Lewis, Commun. Math. Phys. 17, 239 (1970).

    Google Scholar 

  43. P. A. Benioff, J. Math. Phys. 13, 231 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  44. A. S. Holevo, J. Multivar. Anal. 3, 337 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  45. See, e.g., J. M. Jauch, Foundations of Quantum Mechanics, Ch. 4, Addison Wesley (1968). There the term “spectral measure” is used.

    Google Scholar 

  46. E. Schroedinger, Nature 173, 442 (1954).

    Article  ADS  Google Scholar 

  47. E. Wigner, in Foundations of Quantum Mechanics, B. D’Espagnat, Ed., 0. 10, Academic (1971).

    Google Scholar 

  48. R. S. Kennedy, M.I.T. RLE Quart. Prog. Rept. 108, 219 (1973).

    Google Scholar 

  49. S. J. Dolinar, Ph.D. Thesis, Dept. of Elec. Eng. and Comput. Sci., M.I.T. (1976).

    Google Scholar 

  50. E. Wigner, Z. Phys. 133, 101 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. See, e.g., H. Stein and A. Shimony in Ref. [42]

    Google Scholar 

  52. H. P. Yuen, Phys. Lett. 56A, 105 (1976).

    Article  Google Scholar 

  53. H. P. Yuen and J. H. Shapiro, IEEE Trans. Inform. Theory 24, 657 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. J. H. Shapiro, Optics Lett. 5, 351 (1980).

    Article  ADS  Google Scholar 

  55. D. Stoler, Phys. Rev. Lett. 23, 1397 (1974).

    Article  ADS  Google Scholar 

  56. H. P. Yuen and J. H. Shapiro, Optics Lett. 4, 334 (1979).

    Article  ADS  Google Scholar 

  57. C. M. Caves, Phys. Rev. D2 3, 1693 (1981).

    MathSciNet  Google Scholar 

  58. C. M. Caves, submitted to Phys. Rev. D; see also his lectures in this volume.

    Google Scholar 

  59. H. A. Haus and J. A. Mullen, Phys. Rev. 128, 2407 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Yuen, H.P. (1983). Quantum Communication, Quantum Measurement, TCS and QND. In: Meystre, P., Scully, M.O. (eds) Quantum Optics, Experimental Gravity, and Measurement Theory. NATO Advanced Science Institutes Series, vol 94. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3712-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3712-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3714-0

  • Online ISBN: 978-1-4613-3712-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics