Backscattering of Ultrasonic Leaky Waves from Liquid-Solid Interfaces

  • Laszlo Adler
  • Ken Bolland
  • Michel de Billy
  • Gerard Quentin
Part of the Library of Congress Cataloging in Publication Data book series (volume 2A)

Abstract

It is well known that when a finite ultrasonic beam of a given spatial distribution is incident at the Rayleigh angle to a liquid-solid interface, the spatial distribution of the reflected field may be altered significantly. The “energy redistribution” is due to the interference between the specularly reflected beam and a surface wave which has leaked back to the water. The “shape” of the reflected field depends on the so-called Schoch displacement (which is characteristic of the interface) and on the width of the ultrasonic beam. It has also been observed that significant energy is scattered back to the transmitter at the Rayleigh angle. Experimental results will be presented on the evaluation of the parameters effecting the back-scattered amplitude. The backscattered Rayleigh angle phenomena are also applied to measured surface wave velocities of anisotropic materials such as casts and welds.

Keywords

Titanium Anisotropy Attenuation Ferrite Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schoch, Ergep. Exacted Naturwiss., Vol. 23, 127, 1950.CrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Goos and H. Hänchen, Ann. Phys. (Leipzig), Vol. 1, 339, 1947.Google Scholar
  3. 3.
    M.A. Breazeale, L. Adler and J. Smith, Sov. Phys. Acoust., Vol. 21, 1, 1975.Google Scholar
  4. 4.
    W.G. Neubauer, J. Appi. Phys., Vol. 44, 48, 1973.CrossRefGoogle Scholar
  5. 5.
    O.I. Diachoch and W.G. Mayer, J. Acoust. Soc. Amer., Vol. 47, 155, 1970.CrossRefGoogle Scholar
  6. 6.
    M.A. Breazeale, L. Adler and L. Flax, J. Acoust. Soc. Amer., Vol. 56, 866, 1974.CrossRefGoogle Scholar
  7. 7.
    F.L. Becker and R.L. Richardson, J. Acoust. Soc. Amer., 1609, 1972.Google Scholar
  8. 8.
    H.L. Bertoni and T. Tamir, Appl. Phys., Vol. 2, 157, 1973.CrossRefGoogle Scholar
  9. 9.
    M.A. Breazeale, L. Adler and G.W. Scott, J. Appl. Phys., Vol. 48, 530, 1977.CrossRefGoogle Scholar
  10. 10.
    L. Adler and G.W. Scott, IEEE Ultrasonic Symposium Proc., Vol. 76, 100, 1976.Google Scholar
  11. 11.
    L. Adler and D.A. McCathern, J. Appl. Phys., Vol. 49, 2516, 1978.CrossRefGoogle Scholar
  12. 12.
    L. Adler and D.L. Butler, IEEE Ultrasonic Symposium Proc., 1979 (in press).Google Scholar
  13. 13.
    L. Adler and R.L. Crane, submitted to Proc. of the AF/DARPA Review of Progress in Quantitative NDE, 1980.Google Scholar
  14. 14.
    S. Sasaki, J. Appl. PHys., 2, 198, 1963.CrossRefGoogle Scholar
  15. 15.
    O.I. Diachok and W.G. Mayer, J. Acoust. Soc. Am., 47, 155–157, 1970.CrossRefGoogle Scholar
  16. 16.
    W.G. Neubauer, J. Acoust. Soc. Am., 68, 63, 1980.Google Scholar
  17. 17.
    M. de Billy, These de Doctorate d’Etat, Universite Paris V II, 1980.Google Scholar
  18. 18.
    M. de Billy, L. Adler and G. Quentin, accepted for publication in J. Acoust. Soc. Am.Google Scholar
  19. 19.
    A. Norris, submitted to J. Acoust. Soc. Am.Google Scholar
  20. 20.
    K. Bolland and L. Adler, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Laszlo Adler
    • 1
  • Ken Bolland
    • 1
  • Michel de Billy
    • 2
  • Gerard Quentin
    • 2
  1. 1.Department of Welding EngineeringOhio State UniversityColumbusUSA
  2. 2.Groupe de Physique des SolideUniversite de Paris VIIParisFrance

Personalised recommendations