Lactation pp 49-102 | Cite as

The Mechanisms of Milk Secretion

  • Margaret C. Neville
  • Jonathan C. Allen
  • Christopher Watters

Introduction and Overview

Milk secretion occurs in all mammals, the presence of mammary glands being one of the important criteria distinguishing this class from all others. Although the location and external form of the mammary gland differ from one species to another, the mechanisms of milk production are remarkably similar. Milk is produced by epithelial cells which line the mammary alveoli and is stored in the alveolar lumina adjacent to these cells. During ejection, the milk is forced from the alveoli by contraction of surrounding myoepithelial cells and exits through ductules into ducts which drain several clusters of alveoli. In the human, small ducts coalesce into 15 to 25 larger ducts which dilate into small sinuses as they near the areolus. These ducts open directly on the nipple (see Chapter 2 for a more extensive discussion of the anatomy of the human mammary gland). In other animals, the ducts may empty into a single primary duct or a cistern which in turn is drained by a single teat canal. These structures may provide additional milk storage, particularly in dairy animals.


Mammary Gland Human Milk Milk Protein Fatty Acid Synthesis Casein Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peaker, M., 1977, The aqueous phase of milk: Ion and water transport, in: Comparative Aspects of Lactation ( M. Peaker, ed.), Academic Press, New York, pp. 113–134.Google Scholar
  2. 2.
    Smith, G. H. and Vonderhaar, B. K., 1981, Functional differentiation in mouse mammary gland is attained through DNA synthesis, inconsequent of mitosis, Dev. Biol. 88: 167–179.PubMedCrossRefGoogle Scholar
  3. 3.
    Kurosumi, K., Kobayashi, Y., and Baba, N., 1968, The fine structure of mammary glands of lactating rats, with special reference to the apocrine secretion, Exp. Cell. Res. 50: 177–192.PubMedCrossRefGoogle Scholar
  4. 4.
    Peaker, M., 1978, Ion and water transport in the mammary gland, in: Lactation: A Comprehensive Treatise ( M. Peaker, ed.), Academic Press, New York, pp. 437–462.Google Scholar
  5. 4a.
    White, M. D., Ward, S., and Kuhn, N. J., 1981, Composition, stability and electrolyte permeability of Golgi membranes from lactating rat mammary gland, Biochem.J. 200: 663–669.PubMedGoogle Scholar
  6. 5.
    Linzell, J. L. and Peaker, M., 1975, The distribution and movement of carbon dioxide carbonic acid and bicarbonate between blood and milk in the goat, J. Physiol. London 244: 771–782.PubMedGoogle Scholar
  7. 6.
    Mostov, K. E., Kraehenbuhl, J.-P., and Blobel, G., 1980, Receptor-mediated trans-cellular transport of immunoglobulin: Synthesis of secretory component as multiple and larger transmembrane forms, Proc. Natl. Acad. Sci. U.S.A. 77: 7257–7261.PubMedCrossRefGoogle Scholar
  8. 7.
    Rothman, J. E., 1981, The golgi apparatus: Two organelles in tandem, Science 213: 1212–1219.PubMedCrossRefGoogle Scholar
  9. 8.
    Morre, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochem. Biophys. Acta 559:71.PubMedGoogle Scholar
  10. 9.
    Franke, W. W., Luder, M. R., Kartenbeck, J., Zerban, H., and Keenan, T. W., 1976, Involvement of vesicle coat material in casein secretion and surface regeneration, J. Cell Biol. 69: 173–195.PubMedCrossRefGoogle Scholar
  11. 10.
    Martel, M. B. and Got, R., 1972, Présence d’enzymes marquers des membranes plasmiques de l’appareil du Golgi et du reticulum endoplasmique dans les membranes des globules lipidiques du lait maternel, FEB S Lett. 21: 220–222.CrossRefGoogle Scholar
  12. 11.
    Briley, M. S. and Eisenthal, R., 1975, Association of xanthine oxidase with the bovine milk- fat-globule membrane, Biochem. J. 147: 417–423.PubMedGoogle Scholar
  13. 12.
    Powell, J. T., Jarlfors, U., and Brew, K., 1977, Enzymatic characteristics of fat globule membranes from bovine colostrum and bovine milk, J. Cell. Biol. 72: 617–627.PubMedCrossRefGoogle Scholar
  14. 13.
    Peixoto de Menezes, A. and Pinto da Silva, P., 1978, Freeze-fracture observations of the lactating rat mammary gland, J. Cell. Biol. 76: 767–778.PubMedCrossRefGoogle Scholar
  15. 14.
    Zerban, H. and Franke, W. W., 1978, Milk fat globule membranes devoid of intramembranous particles, Cell. Biol. Int., 2: 87–98.CrossRefGoogle Scholar
  16. 15.
    Jenness, R., 1979, The composition of human milk, Semin. Perinatol. 3: 225–239.PubMedGoogle Scholar
  17. 16.
    McClelland, D. B. L., McGrath, J., and Samson, R. R., 1978, Antimicrobial factors in human milk. Studies of concentration and transfer to the infant during the early stages of lactation, Acta Peadiatr. Scand. 271(suppl.): l–20.Google Scholar
  18. 17.
    Lönnerdal, B., Forsum, E., and Hambraeus, L., 1976, A longitudinal study of the protein, nitrogen, and lactose contents of human milk from Swedish well-nourished mothers, Am. J. Clin. Nutr. 29: 1127–1133.PubMedGoogle Scholar
  19. 18.
    Gross, S. J., David, R. J., Bauman, L., and Tomarelli, R. M., 1980, Nutritional composition of milk produced by mothers delivering preterm, J. Pediatr. 96: 641–644.PubMedCrossRefGoogle Scholar
  20. 19.
    Miyamoto, S., Anan, K., Taki, T., Matsumura, Y., Arai, K., Fujii, K., Hashiguchi, A., and Nagata, I., 1957, On the fluctations of sodium and potassium concentrations in human milk, Bull. Tokyo Med. Dent. Univ. 4: 173–177.Google Scholar
  21. 20.
    Kulski, J. K., Hartmann, P. E., Martin, J. D., and Smith, M., 1978, Effects of bromocriptine mesylate on the composition of the mammary secretion in non-breast-feeding women, Obstet. Gynecol. 52: 38–42.PubMedGoogle Scholar
  22. 21.
    Kulski, J. K. and Hartmann, P. E., 1981, Changes in human milk composition during the initiation of lactation Aust. J. Exp. Biol. Med. Sci. 59: 101–114.PubMedCrossRefGoogle Scholar
  23. 22.
    Healy, D. L., Rattigan, S., Hartmann, P. E., Herington, A. C., and Burger, H. G., 1980, Prolactin in human milk: Correlation with lactose, total protein and α-lactalbumin levels, Am. J. Physiol. 238: E83 - E87.PubMedGoogle Scholar
  24. 23.
    Ramadan, M. A., Salah, M. M., and Eid, S. Z., 1972, Effect of breast infection on the composition of human milk, Int. J. Biochem. 3: 543–548.CrossRefGoogle Scholar
  25. 24.
    Conner, A. E., 1979, Elevated levels of sodium and chloride in milk from mastitic breast, Pediatrics 63: 910–911.PubMedGoogle Scholar
  26. 25.
    Hartmann, P. E. and Kulski, J. K., 1978, Changes in the composition of the mammary secretion of women after abrupt termination of breast feeding, J. Physiol. 275: 1–11.PubMedGoogle Scholar
  27. 26.
    Gross, S. J., Buckley, R. H., Wakil, S. S., McAllister, D. C., David, R. J., and Faix, R. G., 1980, Elevated IgA concentration in milk produced by mothers delivered of preterm infants, J. Pediatr. 99: 389–393.Google Scholar
  28. 27.
    Schanler, R. J. and Oh, W., 1980, Composition of breast milk obtained from mothers of premature infants as compared to breast milk obtained from donors, J. Pediatr. 96: 679–681.PubMedCrossRefGoogle Scholar
  29. 28.
    Ho, F. C. S., Wong, R. L. C., and Lawton, J. W. M., 1979, Human colostral and breast milk cells, a light and electron microscopic study, Acta Paediatr. Scand. 68: 389–396.PubMedCrossRefGoogle Scholar
  30. 29.
    Brooker, E., 1980, The epithelial cells and cell fragments in human milk, Cell Tissue Res. 210: 321–332.PubMedCrossRefGoogle Scholar
  31. 30.
    Helminen, H. J. and Ericson, J. L. E., 1968, Studies on mammary gland involution J. Ultrastruct. Res. 25: 202–239.Google Scholar
  32. 31.
    Seelig, L. L., Jr. and Beer, A. E., 1978, Transepithelial migration of leukocytes in the mammary gland of lactating rats, Biol. Reprod. 17: 736–744.CrossRefGoogle Scholar
  33. 32.
    Seelig, L. L., Jr. and Beer, A. E., 1981, Intraepithelial leukocytes in the human mammary gland, Biol. Reprod. 22: 1157–1163.Google Scholar
  34. 33.
    Ardran, G. M., Kemp, F. H., and Lind, J., 1958, A cineradiographic study of breast feeding, Br. J. Radiol. 31: 156–162.PubMedCrossRefGoogle Scholar
  35. 34.
    Ardran, G. M., Kemp, F. H., and Lind, J., 1958, A cineradiographic study of bottle feeding, Br. J. Radiol. 31: 11–22.PubMedCrossRefGoogle Scholar
  36. 35.
    Newton, M. and Newton, N. R., 1948, The let-down reflex in human lactation, J. Pediatr. 33: 698–704.PubMedCrossRefGoogle Scholar
  37. 36.
    Linzell, J. L., 1974, Mammary blood flow and methods of identifying and measuring precusors of milk, in: Lactation: A Comprehensive Treatise, Volume I ( B. L. Larson and V. R. Smith, ed.), Academic Press, New York, pp. 143–225.Google Scholar
  38. 37.
    Ota, K. and Peaker, M., 1979, Lactation in the rabbit: Mammary blood flow and cardiac output, Quart. J. Exp. Physiol. 64: 225–238.PubMedGoogle Scholar
  39. 38.
    Burd, L. I., Lemons, J. A., Makowski, E. L., Meschia, G., and Niswender, G., 1976, Mammary blood flow and endocrine changes during parturition in the ewe, Endocrinology 98: 748–754.PubMedCrossRefGoogle Scholar
  40. 39.
    Burd, L. I., Ascherman, G., Dowers, S., Scommegna, A., and Auletta, F. J., 1978, The effect of 2-Br-α-ergocryptine on mammary blood flow and endocrine changes at the time of parturition in the ewe, Endocrinology 102: 1223–1229.PubMedCrossRefGoogle Scholar
  41. 40.
    Hanwell, A. and Linzell, J. L., 1973, The effects of engorgement with milk and of suckling on mammary blood flow in the rat, J. Physiol. 233: 111–125.PubMedGoogle Scholar
  42. 41.
    Hanwell, A. and Linzell, J. L., 1973, The time cause of cardiovascular changes in lactation in the rat, J. Physiol. 233: 93–110.PubMedGoogle Scholar
  43. 42.
    Martin, C., 1980, Physiologic changes during pregnancy: The mother, in: Fetal and Maternal Medicine ( E.J. Quilligan, ed.), Wiley, New York, pp. 141–179.Google Scholar
  44. 43.
    Pickles, V. R., 1953, Blood-flow estimations as indices of mammary activity, J. Obs/Gyn Br. Emp. 60: 301–316.CrossRefGoogle Scholar
  45. 44.
    Annison, E. F., Linzell, J. L., and West, C. E., 1968, Mammary and whole animal metabolism of glucose and fatty acid in fasting lactating goats, J. Physiol. 197: 445–459.PubMedGoogle Scholar
  46. 45.
    Linzell, J. L., 1960, Mammary-gland blood flow and oxygen, glucose and volatile fatty acid uptake in the concious goat, J. Physiol. 153: 492–509.PubMedGoogle Scholar
  47. 46.
    Anderson, N. G., Powers, M. T., and Tollaksen, S. L., 1982, Proteins of human milk. I. Identification of major components, Clin. Chem. N.Y. 28: 1045–1055.Google Scholar
  48. 47.
    Bezkorovainy, A., 1977, Human milk and colostrum proteins: A review, J. Dairy Sci. 60: 1023–1037.CrossRefGoogle Scholar
  49. 48.
    Payne, D. W., Peng, L-H, Pearlman, W. H., and Talbert, L. M., 1976, Corticosteroid- binding proteins in human colostrum and milk and rat milk, J. Biol. Chem. 251: 5272–5279.PubMedGoogle Scholar
  50. 49.
    Sandberg, D. P., Begley, J. A., and Hall, C. A., 1981, The content, binding, and forms of vitamin B12 in milk, Am. J. Clin. Nutr. 34: 1717–1724.PubMedGoogle Scholar
  51. 50.
    Samson, R. R., Mirtle, C., and McClelland, D. B. L., 1980, The effect of digestive enzymes on the binding and bacteriostatic properties of lactoferrin and vitamin B12 binder in human milk, Acta Paediatr. Scand. 59: 517–523.CrossRefGoogle Scholar
  52. 51.
    Waxman, S. and Schreiber, C., 1975, The purification and characterization of the low molecular weight human folate binding protein using affinity chromatography, Biochemistry 14: 5422–5428.PubMedCrossRefGoogle Scholar
  53. 52.
    Carpenter, G., 1980, Epidermal growth factor is a major growth promoting agent in human milk, Science 210: 198–199.PubMedCrossRefGoogle Scholar
  54. 53.
    Mather, I. H., Tamplin, C. B., and Irving, M. G., 1980, Separation of the proteins of bovine milk-fat-globule membrane by electrofocusing with retention of enzymatic and immunological activity, Eur. J. Biochem. 110: 327–336.PubMedCrossRefGoogle Scholar
  55. 54.
    Mather, I. H. and Keenan, T. W., 1975, Studies on the structure of milk fat globule membrane, J. Membr. Biol. 21: 65–85.PubMedCrossRefGoogle Scholar
  56. 55.
    Jenness, R., 1974, The composition of milk, in: Lactation: A Comprehensive Treatise, Volume III, ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 3–107.Google Scholar
  57. 56.
    Brew, K. and Hill, R. L., 1975, Lactose Biosynthesis, Rev. Physiol. Biochem. Pharmacol. 72: 103–158.Google Scholar
  58. 57.
    Farrell, H. M., Jr., 1976, Models for casein micelle formation, J. Dairy Sci. 56: 1195–1206.CrossRefGoogle Scholar
  59. 58.
    Mercier, J.-C., Chobert, J.-M., and Addeo, F., 1976, Comparative study of the amino acid sequences of the caseinomacropeptides from seven species, FEBS Lett. 72: 208–214.PubMedCrossRefGoogle Scholar
  60. 59.
    Jenness, R., 1979, Comparative aspects of milk proteins, J. Dairy Res. 46: 197–210.PubMedCrossRefGoogle Scholar
  61. 60.
    Sorensen, M. and Sorensen, S. P. L., 1939, The proteins in whey, C. R. Trav. Lab. Carlsberg 23: 55–99.Google Scholar
  62. 61.
    Ainscough, E. W., Brodie, A. M., Plowman, J. E., Bloor, S. J., Loehr, J. S., and Loehr, T. M., 1980, Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance raman spectroscopy, Biochemistry 19: 4072–4079.PubMedCrossRefGoogle Scholar
  63. 62.
    Ainscough, E. W., Brodie, A. M., and Plowman, J. E., 1980, Zinc transport by lactoferrin in human milk, Am. J. Clin. Nutr. 33: 1314–1315.PubMedGoogle Scholar
  64. 63.
    Masson, P. L., Heremans, J. F., and Dive, C., 1966, An iron-binding protein common to many external secretions, Clin. Chim. Acta 14: 735.CrossRefGoogle Scholar
  65. 64.
    Weinberg, E. D., 1978, Iron and Infection, Microbiol. Rev. 42: 45–66.PubMedGoogle Scholar
  66. 65.
    Arnold, R. R., Brewer, M., and Gauthier, J. J., 1980, Bacteriocidal activity of human lactoferrin: Sensitivity of a variety of microorganisms, Infect. Immun. 28: 893–898.PubMedGoogle Scholar
  67. 66.
    Brock, J. H., 1980, Lactoferrin in human milk: Its role in iron absorption and protection against enteric infection in the newborn infant, Arch. Dis. Child. 55: 417–421.PubMedCrossRefGoogle Scholar
  68. 67.
    Phillippy, B. O. and McCarthy, R. D., 1979, Multi-origins of milk serum albumin in the lactating goat, Biochim. Biophys. Acta 584: 298–303.PubMedGoogle Scholar
  69. 68.
    Imam, A., Laurence, D. J. R., and Neville, A. M., 1981, Isolation and characterization of a major glycoprotein from milk-fat-globule membrane of human breast milk, Biochem. J. 193: 47–54.PubMedGoogle Scholar
  70. 69.
    Franke, W. W., Heid, H. W., Grund, C., Winter, S., Freudenstein, C., Schmid, E., Jarasch, E.-D., and Keenan, T. W., 1981, Antibodies to the major insoluble milk fat globule membrane-associated protein: Specific location in apical regions of lactating epithelial cells, J. Cell. Biol. 89: 485–494.PubMedCrossRefGoogle Scholar
  71. 70.
    Rassin, D. K., Sturman, J. A., and Gaull, G. E., 1978, Taurine and other free amino acids in milk of man and other mammals, Early Human Dev. 2: 1–13.CrossRefGoogle Scholar
  72. 71.
    Chavalittamrong, B., Suanpan, S., Boonvisut, S., Chatranon, W., and Gershoff, S. N., 1981, Protein and amino acids of breast milk from Thai mothers, Am. J. Clin. Nutr. 34: 1126–1130.PubMedGoogle Scholar
  73. 72.
    Mepham, T. B., 1977, Synthesis and secretion of milk proteins, Symp. Zool. Soc. London 41: 57–75.Google Scholar
  74. 73.
    Linzell, J. L., 1967, The magnitude and mechanisms of the uptake of milk precursors by the mammary gland, Nutr. Soc. Symp. Proc. 27: 44–52.CrossRefGoogle Scholar
  75. 74.
    Stegink, L. D., Filer, L. J., and Baker, G. L., 1972, Monosodium glutamate: Effect on plasma and breast milk amino acid levels in lactating women, Proc. Soc. Exp. Biol. Med. 140: 836–841.PubMedGoogle Scholar
  76. 75.
    Stegink, L. D., Filer, L. J., Jr., and Baker, G. L., 1979, Plasma erythrocyte and human milk levels of free amino acids in lactating women administered aspartame or lactose, J. Nutr. 109: 2173–2181.PubMedGoogle Scholar
  77. 76.
    Lingappa, V. R., Lingappa, J. R., Prasad, R., Ebner, K. E., and Blobel, G., 1978, Coupled cell-free synthesis, segregation and core glycosylation of a secretory protein, Proc. Natl. Acad. Sci. U.S.A. 75: 2338–2342.PubMedCrossRefGoogle Scholar
  78. 77.
    Craig, R. K., Brown, P. A., Harrison, O. S., Mcllreavy, D., and Campbell, P. N., 1976, Guinea-pig milk-protein synthesis: Isolation and characterization of messenger ribonucleic acids from lactating mammary gland and identification of caseins and pre-a-lactalbumin as translation products in heterologous cell-free systems, Biochem. J. 160: 57–74.PubMedGoogle Scholar
  79. 78.
    Rosen, J. M. and Shields, D., 1980, Post-translational modifications of the rat mammary gland caseins: In vitro synthesis, processing, and segregation, in: Testicular Development, Structure, and Function ( A. Steinberger and E. Steinberger, eds.), Raven Press, New York, pp. 343–349.Google Scholar
  80. 79.
    Mercier, J.-C. and Gaye, P., 1980, Study of secretory lactoproteins: Primary structures of the signals and enzymatic processing, Ann. N. Y. Acad. Sci. 343: 232–251.PubMedCrossRefGoogle Scholar
  81. 80.
    Gaye, P. and Mercier, J.-C., 1979, Study of the precursors of ovine lactoproteins: Primary structures of the “signals” and enzymic processing of prelactoproteins by mammary microsomal membranes, J. Dairy Res. 46: 175–180.PubMedCrossRefGoogle Scholar
  82. 81.
    Blobel, G. and Dobberstein, G., 1975, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound microsomes of murine myeloma, J. Cell. Biol. 67: 835–851.PubMedCrossRefGoogle Scholar
  83. 82.
    Struck, D. K. and Lennarz, W. J., 1977, Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccaride chain of ovalbumin, J. Biol. Chem. 252: 1007–1013.PubMedGoogle Scholar
  84. 83.
    Vijay, I. K., Perdew, G. H., and Lewis, D. E., 1980, Biosynthesis of mammary glycoproteins, J. Biol. Chem. 255: 11210–11220.PubMedGoogle Scholar
  85. 84.
    Jolles, P. and Fiat, A. M., 1979, The carbohydrate portions of milk glycoproteins, J. Dairy Res. 46: 187–191.PubMedCrossRefGoogle Scholar
  86. 85.
    Hollmann, K. H., 1974, Cytology and fine structure of the mammary gland, in: Lactation: A Comprehensive Treatise, Volume I ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 3–95.Google Scholar
  87. 86.
    White, D. A. and Speake, B. K., 1980, The effect of cycloheximide on the glycosylation of lactating-rabbit mammary glycoproteins, Biochem. J. 192: 297–301.PubMedGoogle Scholar
  88. 87.
    Turkington, R. W. and Topper, Y. J., 1966, Stimulation of casein synthesis and histological development of the mammary gland by human placental lactogen in vitro, Endocrinology 79: 175–181.PubMedCrossRefGoogle Scholar
  89. 88.
    Bingham, E. W. and Groves, M. L., 1979, Properties of casein kinase from lactating bovine mammary gland, J. Biol Chem. 254: 4510–4515.PubMedGoogle Scholar
  90. 89.
    Bingham, E. W. and Farrell, H. M., 1974, Casein kinase from the Golgi apparatus of lactating mammary gland, J. Biol. Chem. 249: 3647–3651.PubMedGoogle Scholar
  91. 90.
    Pascall, J. C., Boulton, A. P., and Craig, R. K., 1981, Characterisation of a membrane- bound serine-specific casein kinase isolated from lactating guinea-pig mammary gland, Eur. J. Biochem. 119: 91–99.PubMedCrossRefGoogle Scholar
  92. 91.
    Greenberg, R., Groves, M. L., and Peterson, R. F., 1976, Amino terminal sequence and location of phosphate groups of the major human casein, J. Dairy Sci. 59: 1016–1018.PubMedCrossRefGoogle Scholar
  93. 92.
    Mercier, J. C., Grosclaude, F., and Ribadeau-Dumas, B., 1972, Primary structure of bovine casein, a review, Milchwissenschaft 27: 402.Google Scholar
  94. 93.
    Groves, M. L. and Gordon, W. G., 1970, The major component of human casein; A protein phosphorylated at different levels, Arch Biochem. Biophys. 140: 47–51.PubMedCrossRefGoogle Scholar
  95. 94.
    Thompson, M. D. and Farrell, H., Jr., 1973, Genetic variants of the milk proteins, in: Lactation. A Comprehensive Treatise Volume 3, ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 109–134.Google Scholar
  96. 95.
    Waugh, D. F. and Talbot, B., 1971, Equilibrium casein micelle systems, Biochemistry 10: 4153–4162.PubMedCrossRefGoogle Scholar
  97. 96.
    McGann, T. C. A., Donnelly, W. J., Kearney, R. D., and Buchheim, W., 1980, Composition and size distribution of bovine casein micelles, Biochim. Biophys. Acta 630: 261–270.PubMedGoogle Scholar
  98. 97.
    Rosen, J. M., O’Neal, D. L., McHugh, J. E., and Comstock, J. P., 1978, Progesterone- mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy, J. Biochem. 17: 290–297.CrossRefGoogle Scholar
  99. 98.
    Nakhasi, H. L. and Qasba, P. K., 1979, Quantitation of milk proteins and their mRNAs in rat mammary gland at various stages of gestation and lactation, J. Biol. Chem. 254: 6016–6025.PubMedGoogle Scholar
  100. 99.
    Houdebine L. M., 1980, The control of casein gene expression by prolactin and its modulators, in: Central and Peripheral Regulation of Prolactin ( R. M. Macloed and U. Scapagnini, eds.), Raven Press, New York, pp. 189–205.Google Scholar
  101. 100.
    Guyette, W. A., Matusik, R. J., and Rosen, J. M., 1979, Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression, Cell 17: 1013–1023.PubMedCrossRefGoogle Scholar
  102. 101.
    Burditt, L. J., Parker, D., Craig, R. K., Getova, T., and Campbell, P. N., 1981, Differential expression of a-lactalbumin and casein genes during the onset of lactation in the guinea- pig mammary gland, Biochem. J. 194: 999–1006.PubMedGoogle Scholar
  103. 102.
    Wilde, C. J., Paskin, N., Saxton, J., and Mayer, R. J., 1980, Protein degradation during terminal cytodifferentiation, Biochem. J. 192: 311–320.PubMedGoogle Scholar
  104. 103.
    Fisher, M. M., Nagy, B., Bazin, H., and Underdown, B. J., 1979, Biliary transport of IgA: Role of secretory component, Proc. Nat. Acad. Sci. USA, 76: 2008 – 2012.PubMedCrossRefGoogle Scholar
  105. 104.
    Renston, R. H., Jones, A. L., Christiansen, W. D., Hradek, G. T., and Underdown, B. J., 1980, Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A, Science 208: 1276–1278.PubMedCrossRefGoogle Scholar
  106. 105.
    Richards, D. A., Rodgers, J. R., Supowit, S. C., and Rosen, J. M., 1981, Construction and preliminary characterization of the rat casein and α-lactalbumin cDNA clones, J. Biol Chem. 256: 526–532.PubMedGoogle Scholar
  107. 106.
    Richards, D. A., Blackburn, D. E., and Rosen, J. M., 1981, Restriction enzyme mapping and hetero-duplex analysis of the rat milk proteins cDNA clones, J. Biol Chem. 256: 533–538.PubMedGoogle Scholar
  108. 107.
    Craig, R. K., Hall, L., Parker, D., and Campbell, P. N., 1981, The construction, identification and partial characterization of plasmids containing guinea-pig milk protein complementary DNA sequences, Biochem. J. 194: 989–998.PubMedGoogle Scholar
  109. 108.
    Hall, L., Davies, M. S., and Craig, R. K., 1981, The construction, identification and characterisation of plasmids containing human α-lactalbumin cDNA sequences, Nucleic Acids Res. 9: 65–84.PubMedCrossRefGoogle Scholar
  110. 109.
    Dandekar, A. M. and Qasba, P. K., 1981, Rat α-lactalbumin has a 17-residue-long COOH- terminal hydrophobic extension as judged by sequence analysis of the cDNA clones, Proc. Nat. Acad. Sci. 78: 4853–4857.PubMedCrossRefGoogle Scholar
  111. 110.
    Ono, M. and Oka, T., 1980, The differential actions of Cortisol on the accumulation of α- lactalbumin and casein in midpregnant mouse mammary gland in culture, Cell 19: 473–480.PubMedCrossRefGoogle Scholar
  112. 111.
    Kuhn, N. J. and White, A., 1975, The topography of lactose synthesis, Biochem. J. 148: 77–84.PubMedGoogle Scholar
  113. 112.
    Ebner, K. E. and Schanbacher, F. L., 1974, Biochemistry of lactose and related carbohydrates, in: Lactation, Volume 2 ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 77–113.Google Scholar
  114. 113.
    Faulkner, A., Chaiyabutr, N., Peaker, M., Carrick, D. T., and Kuhn, N. J., 1981, Metabolic significance of milk glucose, J. Dairy Res. 48: 51–56.PubMedCrossRefGoogle Scholar
  115. 114.
    Grimmonprez, L. and Montreuil, J., 1975, Isolement et étude des propriétés physicochimiques d’oligosaccharides du lait de femme, Biochimie 57: 695–701.PubMedCrossRefGoogle Scholar
  116. 115.
    Baer, H. H., 1969, Oligosaccharides, in: The Amino Sugars, Volume IA ( R. W. Jeanloz, ed.), Academic Press, New York, pp. 267–373.Google Scholar
  117. 116.
    Yamashita, K., Tachibana, Y., and Kobata, A., 1977, Oligosaccharides of human milk, J. Biol. Chem. 252: 5408–5411.PubMedGoogle Scholar
  118. 117.
    Kobata, A., Grollman, E. F., and Ginsburg, V., 1968, An enzymatic basis for blood type A in humans, Arch. Biochem. Biophys. 124: 608–612.CrossRefGoogle Scholar
  119. 118.
    Shen, L., Grollman, E. F., and Ginsburg, V., 1968, An enzymatic basis for secretor status and blood group substance specificity in humans, Proc. Nat. Acad. Sci. 59: 224–230.PubMedCrossRefGoogle Scholar
  120. 119.
    Jones, E. A., 1977, Synthesis and secretion of milk sugars, Symp. Zool. Soc. London 41: 77–94.Google Scholar
  121. 120.
    Chaiyabutr, N., Faulkner, A., and Peaker, M., 1980, The utilization of glucose for the synthesis of milk components in the fed and starved lactating goat in vivo, Biochem. J. 186: 301–308.PubMedGoogle Scholar
  122. 121.
    Robinson, A. M. and Williamson, D. H., 1977, Comparison of glucose metabolism in the lactating mammary gland of the rat in vivo and in vitro, Biochem. J. 164: 153–159.PubMedGoogle Scholar
  123. 122.
    Baldwin, R. Y. and Yang, Y. T., 1974, Enzymatic and metabolic changes in the development of lactation, in: Lactation, Volume I ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 349–413.Google Scholar
  124. 123.
    Lehninger, A. L., 1975, Biochemistry, Worth, New York, p. 47.Google Scholar
  125. 124.
    Kronman, M. J., Sinha, S. K., and Brew, K., 1981, Characteristics of the binding of Ca2+ and other divalent metal ions to bovine α-lactalbumin, J. Biol. Chem. 256: 8582–8587.PubMedGoogle Scholar
  126. 125.
    Powell, J. T. and Brew, K., 1976, Metal ion activation of galactosyltransferase, J. Biol. Chem. 251: 3645–3652.PubMedGoogle Scholar
  127. 126.
    O’Keeffe, E. T., Hill, R. L., and Bell, J. E., 1980, Active site of bovine galactosyltransferase: Kinetic and flourescence studies, Biochemistry 19: 4954–4962.PubMedCrossRefGoogle Scholar
  128. 127.
    Powell, J. T. and Brew, K., 1976, A comparison of the interactions of galactosyltransferase with a glycoprotein substrate (ovalbumin) and with α-lactalbumin, J. Biol. Chem. 251: 3653–3663.PubMedGoogle Scholar
  129. 128.
    Brew, K., 1969, Secretion of α-lactalbumin into milk and its relevance to the organization and control of lactose synthetase, Nature 222: 671–672.PubMedCrossRefGoogle Scholar
  130. 129.
    Kuhn, N. J. and White, A., 1977, The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus, Biochem. J. 168: 423–433.PubMedGoogle Scholar
  131. 130.
    White, M. D., Kuhn, N. J., and Ward, S., 1981, Mannitol and glucose movement across the Golgi membrane of lactating-rat mammary gland, Biochem. J. 194: 173–177.PubMedGoogle Scholar
  132. 131.
    Kuhn, N. J. and Lowenstein, J. M., 1967, Lactogenesis in the rat. Changes in metabolic parameters at parturition, Biochem. J. 105: 995–2602.PubMedGoogle Scholar
  133. 132.
    Palmiter, R. D., 1969, What regulates lactose content in milk? Nature 221: 912–917.PubMedCrossRefGoogle Scholar
  134. 133.
    Nicholas, K. R., Hartmann, P. E., and McDonald, B. L., 1981, α-Lactalbumin, and lactose concentrations in rat milk during lactation, Biochem. J. 194: 149–154.PubMedGoogle Scholar
  135. 134.
    Neville, M. C., Selker, F., Semple, K., and Watters, C., 1981, ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland, J. Membr. Biol. 61: 97–105.PubMedCrossRefGoogle Scholar
  136. 135.
    Kuhn, N. J., Wooding, F. B. P., and White, A., 1980, Properties of galactosyltransferaseenriched vesicles of Golgi membranes from lactating-rat mammary gland, Eur. J. Biochem. 103: 377–385.PubMedCrossRefGoogle Scholar
  137. 136.
    Wilde, C.J. and Kuhn, N. J., 1981, Lactose synthesis and the utilisation of glucose by rat mammary acini, Int. J. Biochem. 13: 311–316.PubMedCrossRefGoogle Scholar
  138. 137.
    Neville, M. C. and Peaker, M., 1979, The secretion of calcium, and phosphorus into milk, J. Physiol. 290: 59–67.PubMedGoogle Scholar
  139. 138.
    Linzell, J. L., Mepham, T. B., and Peaker, M., 1976, The secretion of citrate into milk, J. Physiol. 260: 739–750.PubMedGoogle Scholar
  140. 139.
    Johke, T., 1978, Nucleotides of mammary secretion, in: Lactation: A Comprehensive Treatise, Volume IV ( B. L. Larson, ed.), Academic Press, New York, pp. 513–522.Google Scholar
  141. 140.
    Barltrop, D. and Hillier, R., 1974, Calcium and phosphorus content of transitional and mature human milk, Acta Paediatr. Scan 63: 347–350.CrossRefGoogle Scholar
  142. 141.
    Vaughan, L. A., Weber, C. W., and Kemberling, S. R., 1979, Longitudinal changes in the mineral content of human milk, Am. J. Clin. Nutr. 32: 2301–2306.PubMedGoogle Scholar
  143. 142.
    Allen, J. C., Neville, M. C., and Neifert, M. A., 1982, Ionized calcium in human milk, Fed. Proc. 41: 474.Google Scholar
  144. 143.
    Holt, C. and Muir, D. D., 1979, Inorganic constituents of milk: I. Correlation of soluble calcium with citrate in bovine milk, J. Dairy Res. 46: 433–439.PubMedCrossRefGoogle Scholar
  145. 144.
    Carroll, R. J., Thompson, M. P., and Farrell, H. M., Jr., 1970, Formation and structure of casein micelles in lactating mammary tissue, 28th Annual Proceedings Electron Microscopy Society of America, p. 150.Google Scholar
  146. 145.
    Heald, C. W. and Saacke, R. G., 1972, Cytological comparison of milk protein synthesis of rat mammary tissue in vivo and in vitro, J. Dairy Sci. 55: 612.CrossRefGoogle Scholar
  147. 146.
    Baumrucker, C. R. and Keenan, T. W., 1975, Membranes of the mammary gland. X. ATP-dependent calcium accumulation by Golgi apparatus rich fraction from bovine mammary gland, Exp. Cell. Res. 90: 253–260.PubMedCrossRefGoogle Scholar
  148. 147.
    West, D. W., 1981, Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary gland, Biochem. Biophys. Acta, 673: 374–386.PubMedGoogle Scholar
  149. 148.
    Watters, C. D., 1981, The Golgi apparatus of lactating mammary tissue resembles that of murine skeletal sarcoplasmic reticulum, J. Cell. Biol. 91: 262a.Google Scholar
  150. 149.
    Carafoli, E. and Crompton, M., 1978, The regulation of intracellular calcium, Curr. Topics Membr. Trans. 10: 151–216.CrossRefGoogle Scholar
  151. 150.
    Lemons, J. A., Schreiner, R. L., and Gresham, E. L., 1980, Simple method for determining the caloric and fat content of human milk, Pediatrics 66: 626–628.PubMedGoogle Scholar
  152. 151.
    Bauman, D. E. and Davis, C. L., 1974, Biosynthesis of milk fat, in: Lactation, Volume 2 (B. L. Larson and V. R. Smith, eds.), Bauman, D. E. and Davis, C. L., pp. 31–75.Google Scholar
  153. 152.
    Dils, R. R., 1977, Mammary glands, in: Lipid Metabolism in Mammals, Volume 2 ( F. Snyder, ed.), Plenum Press, New York, pp. 131–144.Google Scholar
  154. 153.
    Dils, R., Clark, S., and Knudsen, J., 1977, Comparative aspects of milk fat synthesis, in: Comparative Aspects of Lactation ( M. Peaker, ed.), Academic Press, New York, pp. 43–55.Google Scholar
  155. 154.
    Mayer, R. J., 1978, Hormonal factors in lipogensis in mammary gland. Vitam. Horm. 36: 101–128.PubMedCrossRefGoogle Scholar
  156. 155.
    Smith, S., 1980, Mechanism of chain length determination in biosynthesis of milk fatty acids, J. Dairy Sci. 63: 337–350.PubMedCrossRefGoogle Scholar
  157. 156.
    Hardie, D. H., 1980, The regulation of fatty acid synthesis by reversible phosphorylation of acetyl Co A carboxylase, in: Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation ( P. Cohen, ed.), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 33–62.Google Scholar
  158. 157.
    Hytten, F. E., 1954, Clinical and chemical studies in human lactation, Br. Med. J. 2: 175–182.CrossRefGoogle Scholar
  159. 158.
    Whitehead, R. G., 1979, Nutrition and lactation, Post-Grad. Med. J. 55: 303–310.Google Scholar
  160. 159.
    Gibson, R. A. and Kneebone, G. M., 1981, Fatty acid composition of human colostrum and mature breast milk, Am. J. Clin. Nutr. 34: 252–257.PubMedGoogle Scholar
  161. 160.
    Breckenridge, W. C. and Kuksis, A., 1967, Molecular weight distributions of milk fat triglycerides from seven species, J. Lipid Res. 8: 473–478.PubMedGoogle Scholar
  162. 161.
    Insull, W., Jr., Hirsch, J., James, T., and Ahrens, E. H., Jr., 1958, The fatty acids of human milk, Volume II. Alterations produced by manipulation of caloric balance and exchange of dietary fats, J. Clin. Invest. 38: 443–450.CrossRefGoogle Scholar
  163. 162.
    Jensen, R. G., Clark, R. M., and Ferris, A. M., 1980, Composition of the lipids in human milk: A review, Lipids 15: 345–355.PubMedCrossRefGoogle Scholar
  164. 163.
    Read, W. W. C., Lutz, P. G., and Tashjian, A., 1965, Human milk lipids. II. The influence of dietary carbohydrates and fat on the fatty acids of mature milk. A study in four ethnic groups, Am. J. Clin. Nutr. 17: 180–183.PubMedGoogle Scholar
  165. 164.
    Mellies, M. J., Ishikawa, T. T., Gartside, P. S., Burton, K., MacGee, J., Allen, K., Steiner, P. M., Brady, D., and Glueck, C. J., 1979, Effects of varying maternal dietary fatty acids in lactating women and their infants, Am. J. Clin. Nutr. 32: 299–303.PubMedGoogle Scholar
  166. 165.
    Crawford, M. A., Laurance, B. M., and Munhambo, A. E., 1977, Breast feeding and human milk composition, Lancet 1: 99–100.PubMedCrossRefGoogle Scholar
  167. 166.
    Guthrie, H. A., Picciano, M. F., and Sheehe, D., 1977, Fatty acid patterns of human milk, J. Pediatr. 90: 39–41.PubMedCrossRefGoogle Scholar
  168. 167.
    Titheridge, M. A. and Coore, H. G., 1977, Preparation and properties of mitochondria from lactating rat mammary gland in particular relation to lipogenesis, Int. J. Biochem. 8: 433–436.CrossRefGoogle Scholar
  169. 168.
    Katz, J., Wals, P. A., and Van de Velde, R. L., 1974, Lipogenesis by acini from mammary gland of lactating rats, J. Biol. Chem. 249: 7348–7357.PubMedGoogle Scholar
  170. 169.
    Crabtree, B., Taylor, D. J., Coombs, J. E., Smith, R. A., Templer, S. P., and Smith, G. H., 1981, The activities and intracellular distributions of enzymes of carbohydrate, lipid and ketone-body metabolism in lactating mammary glands from ruminants and non-ruminants, Biochem. J. 196: 747–756.PubMedGoogle Scholar
  171. 170.
    Peaker, M., Faulkner, A., and Blatchford, D. R., 1981, Changes in milk citrate concentration during lactation in the goat, J. Dairy Res. 48: 357–361.PubMedCrossRefGoogle Scholar
  172. 171.
    Knudsen, J. and Grunnet, I., 1980, Primer specificity of mammalian mammary gland fatty acid synthetases, Biochem. Biophys. Res. Commun. 95: 1808–1814.PubMedCrossRefGoogle Scholar
  173. 172.
    Dodds, P. F., Guadalupe, M., Guzman, F., Chalberg, S. C., Anderson, G. J., and Kumar, S., 1981, Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase, J. Biol. Chem. 256: 6282–6290.PubMedGoogle Scholar
  174. 173.
    Hansen, J. K. and Knudsen, J., 1980, Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase, Biochem. J. 186: 287–294.PubMedGoogle Scholar
  175. 174.
    Speake, B. K., Dils, R., and Mayer, R. J., 1976, Regulation of enzyme turnover during tissue differentiation. Interactions of insulin, prolactin and Cortisol in controlling the turnover of fatty acid synthetase in rabbit mammary gland in organ culture, Biochem. J. 154: 359–370.PubMedGoogle Scholar
  176. 175.
    Smith, S. and Ryan, P., 1979, Asychronous appearance of two enzymes concerned with medium chain fatty acid synthesis in developing rat mammary gland, J. Biol. Chem. 254: 8932–8936.PubMedGoogle Scholar
  177. 176.
    Baxter, M. A., Goheer, M. A., and Coore, H. G., 1979, Absent pyruvate inhibition of pyruvate dehydrogenase kinase in lactating rat mammary gland following various treatments, FEBS Lett. 97: 27–31.PubMedCrossRefGoogle Scholar
  178. 177.
    Goheer, M. A. and Coore, H. G., 1977, Pyruvate disposal by lactating-rat mammary gland, Biochem. Soc. Trans. 5: 834–838.PubMedGoogle Scholar
  179. 178.
    Munday, M. R. and Williamson, D. H., 1981, Role of pyruvate dehydrogenase and insulin in the regulation of lipogenesis in the lactating mammary gland of the rat during the starved-refed transition, Biochem. J. 196: 831–837.PubMedGoogle Scholar
  180. 179.
    Coore, H. G. and Field, B., 1974, Properties of pyruvate dehydrogenase of rat mammary tissue and its changes during pregnancy, lactation and weaning, Biochem. J. 142: 87–95.PubMedGoogle Scholar
  181. 180.
    Scow, R. O., Blanchette-Mackie, E. J., and Smith, L. C., 1976, A model for lipid transport from blood by lateral diffusion in cell membranes, Circulation Res. 39: 149–162.PubMedGoogle Scholar
  182. 181.
    Hamosh, M., Clary, T. R., Chernick, S. S., and Scow, R. O., 1970, Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats, Biochim. Biophys. Acta 210: 473–482.PubMedGoogle Scholar
  183. 182.
    Zinder, O., Hamosh, M., Fleck, T. R. C., and Scow, R. O., 1974, Effect of prolactin on lipoprotein lipase in mammary gland and adipose tissue of rats, Am. J. Physiol. 226: 744–748.Google Scholar
  184. 183.
    Scow, R. O., Mendelson, C. R., Zinder, O., Hamosh, M., and Blanchette-Mackie, E. J., 1973, Role of lipoprotein lipase in the delivery of dietary fatty acids to lactating mammary tissue, in: Dietary Lipids and Postnatal Development ( C. Galli, ed.), Raven Press, New York, pp. 91–114.Google Scholar
  185. 184.
    Steingrimsdottir, L., Brasel, J. A., and Greenwood, M. R. C., 1980, Diet, pregnancy, and lactation: Effects on adipose tissue, lipoprotein lipase, and fat cell size, Metabolism 29: 837–841.PubMedCrossRefGoogle Scholar
  186. 185.
    Long, C. A., Patton, S., and McCarthy, R. D., 1980, Origins of the cholesterol in milk, Lipids 15: 853–857.PubMedCrossRefGoogle Scholar
  187. 186.
    Kris-Etherton, P. M. and Frantz, I. D., Jr., 1980, The contribution of chylomicron cholesterol to milk cholesterol in the rat, Proc. Soc. Exp. Biol. Med. 165: 502–507.PubMedGoogle Scholar
  188. 187.
    Gaull, G. E., Jensen, R. E., Rassin, D. K., and Malloy, M. H., 1982, Human milk as food, Adv. Perinatal Med. 2: 47–120.Google Scholar
  189. 188.
    Mellies, M. J., Ishikawa, T. T., Gartside, P., Burton, K., MacGee, J., Allen, K., Steiner, P. M., Brady, D., and Glueck, C. J., 1978, Effects of varying maternal dietary cholesterol and phytosterol in lactating women and their infants, Am. J. Clin. Nutr. 31: 1347–1354.PubMedGoogle Scholar
  190. 189.
    Mellies, M. J., Burton, K., Larsen, R., Fixler, D., and Glueck, C. J., 1979, Cholesterol, phytosterols and polyunsaturated/saturated fatty acid ratios during the first twelve months of lactation, Am. J. Clin. Nutr. 32: 2382–2389.Google Scholar
  191. 190.
    Kris-Etherton, P. M., and Frantz, I. D., Jr., 1978, Inhibition of cholesterol synthesis in mammary tissue, lung and kidney following cholesterol feeding in the lactating rat, Lipids 14: 907–912.CrossRefGoogle Scholar
  192. 191.
    Easter, D. J., Patton, S., and McCarthy, R. D., 1971, Metabolism of phospholipid in mammary gland: I. The supply of phospholipid for milk synthesis in the rat and goat, Lipids 6: 844–849.PubMedCrossRefGoogle Scholar
  193. 192.
    Blackberg, L. and Hernell, O., 1981, The bile-salt-stimulated lipase in human milk: Purification and characterization, Eur. J. Biochem. 116: 221–225.PubMedCrossRefGoogle Scholar
  194. 193.
    Freudenberg, E., 1966, A lipase in the milk of the gorilla, Experientia 22: 317.PubMedCrossRefGoogle Scholar
  195. 194.
    Hernell, O., Gebre-Medhin, M., and Olivecrona, T., 1977, Breast milk composition in Ethiopian and Swedish mothers. IV. Milk lipases, Am. J. Clin. Nutr. 30: 508–511.PubMedGoogle Scholar
  196. 195.
    Jensen, R. G. and Pitas, R. E., 1976, Milk lipoprotein lipases: A review, J. Dairy Sci. 59: 1203–1214.PubMedCrossRefGoogle Scholar
  197. 196.
    Poland, R. L., Schultz, G. E., and Garg, G., 1980, High milk lipase activity associated with breast milk jaundice, Pediatr. Res. 14: 1328–1331.PubMedCrossRefGoogle Scholar
  198. 197.
    Linzell, J. L. and Peaker, M., 1974, Changes in colostrum composition and in the permeability of the mammary epithelium at about the time of parturition in the goat, J. Physiol. 243: 129–151.PubMedGoogle Scholar
  199. 198.
    Linzell, J. L. and Peaker, M., 1971, Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism, J. Physiol. 216: 683–700.PubMedGoogle Scholar
  200. 199.
    Nagy, Zs., Lustyik, G., Zarandi, B., and Bertoni-Freddari, C., 1981, Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive x-ray microanalysis, J. Cell Biol. 90: 769–777.PubMedCrossRefGoogle Scholar
  201. 200.
    Johnson, M. P. and Wooding, F. B. P., 1978, Adenosine triphosphatase distribution in mammary tissue, Histochem. J. 10: 171–183.PubMedCrossRefGoogle Scholar
  202. 201.
    Peaker, M., 1977, Mechanism of milk secretion: Milk composition in relation to potential difference across the mammary epithelium, J. Physiol 270: 489–505.PubMedGoogle Scholar
  203. 202.
    Emerman, J. T. and Pitelka, D. R., 1977, Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen mambranes, In Vitro 13: 316–328.PubMedCrossRefGoogle Scholar
  204. 203.
    Bisbee, C. A., 1981, Transepithelial electrophysiology of cultured mouse mammary epithelium: Sensitivity to prolactins, Am. J. Physiol. 241: E410 - E413.PubMedGoogle Scholar
  205. 203a.
    Wicha, M. S., Lowrie, G., Kohn, E., Bagavandoss, P., and Hann, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. U.S.A. 79: 3213–3217.PubMedCrossRefGoogle Scholar
  206. 204.
    Martin, R. H., Glass, M. R., Chapman, C., Wilson, G. D., and Woods, K. L., 1980, Human a-lactalbumin and hormonal factors in pregnancy and lactation, Clin. Endocrinol. 13: 223–230.CrossRefGoogle Scholar
  207. 205.
    Pitelka, D. R., 1978, Cell contacts in the mammary gland, in: Lactation: A Comprehensive Treatise Volume IV, ( B. L. Larson, ed.), Academic Press, New York, pp. 41–66.Google Scholar
  208. 206.
    Shannon, O. M. and Pitelka, D. R., 1981, Influences of cell shape on the induction of functional differentiation in mouse mammary cells in vitro, In Vitro 17: 1016–1028.PubMedCrossRefGoogle Scholar
  209. 207.
    Maule Walker, F. M. and Peaker, M., 1980, Local production of prostaglandins in relation to mammary function at the onset of lactation in the goat, J. Physiol 309: 65–79.PubMedGoogle Scholar
  210. 208.
    Neville, M. C. and Peaker, M., 1981, Ionized calcium in milk and integrity of the mammary epithelium in the goat, J. Physiol 313: 561–570.PubMedGoogle Scholar
  211. 209.
    Masson, P. L. and Heremans, J. F., 1971, Lactoferrin in milk from different species, Comp. Biochem. Physiol 39: 119–129.Google Scholar
  212. 210.
    Vuori, E. and Kuitunen, P., 1979, The concentrations of copper and zinc in human milk— A longitudinal study, Acta Paediatr. Scand. 68: 33–37.PubMedCrossRefGoogle Scholar
  213. 211.
    Dauncey, M. J., Shaw, J. C. L., and Urman, J., 1977, The absorption and retention of magnesium, zinc and copper by low birth weight infants fed pasturized human breast milk, Pediatr. Res. 11: 1033–1039.PubMedCrossRefGoogle Scholar
  214. 212.
    Steiner, G. A., 1978, Successful treatment of acrodermatitis enterpathica with zinc sulfate, Am. J. Hosp. Pharm. 35: 1535–1538.PubMedGoogle Scholar
  215. 213.
    Duncan, J. R. and Hurley, L. S., 1979, Intestinal absorption of zinc: A role for a binding ligand in milk, Am. J. Physiol 235: E556 - E559.Google Scholar
  216. 214.
    Evans, G. W. and Johnson, P. E., 1980, Characterization and quantitation of a zinc binding ligand in human milk, Pediatr. Res. 14: 876–880.PubMedGoogle Scholar
  217. 215.
    Lonnerdal, B., Stanislowski, A. G., and Hurley, L. S., 1980, Isolation of a low molecular weight zinc binding ligand from human milk, J. Biochem. 12: 145–158.Google Scholar
  218. 216.
    Cousins, R.J. and Smith, K. T., 1980, Zinc-binding properties of bovine and human milk in vitro: Influences on changes in zinc content, Am. J. Clin. Nutr. 33: 1083–1087.PubMedGoogle Scholar
  219. 217.
    Zimmerman, A. W. and Hambidge, K. M., 1980, Low zinc in mothers milk and zinc deficiency syndrome in breast fed premature infants, Am. J. Clin. Nutr. 33: 951.Google Scholar
  220. 218.
    Neathery, M. W., Miller, W. J., Blackman, D. M., and Gentry, R. P., 1973, Performance and milk zinc from low-zinc intake in Holstein cows, J. Dairy Sci. 56: 212–217.PubMedCrossRefGoogle Scholar
  221. 219.
    Kosman, D. J. and Henkin, R. I., 1979, Plasma and serum zinc concentrations, Lancet 1: 1410.PubMedCrossRefGoogle Scholar
  222. 220.
    Lengemann, F. W., Wentworth, R. A., and Comar, C. L., 1974, Physiological and biochemical aspects of the accumulation of contaminant radionuclides in milk, in: Lactation: A Comprehensive Treatise, Volume III ( B. L. Larson and V. R. Smith, eds.), Academic Press, New York, pp. 159–215.Google Scholar
  223. 221.
    Brown-Grant, K., 1957, Iodide concentrating mechanism of the mammary gland, J. Physiol. 135: 644–654.PubMedGoogle Scholar
  224. 222.
    Swanson, E. W., 1972, Effect of dietary iodine on thyroxine secretion rate of lactating cows, J. Dairy Sci. 55: 1763–1767.PubMedCrossRefGoogle Scholar
  225. 223.
    Miller, J. K. and Swanson, E. W., 1963, Some factors affecting iodine secretion in milk, J. Dairy Sci. 46: 927–932.CrossRefGoogle Scholar
  226. 224.
    Lengemann, F. W., 1970, Metabolism of radioiodide by lactating goats given 13–iodine for extended periods, J. Dairy Sci. 53: 165–175.PubMedCrossRefGoogle Scholar
  227. 225.
    Potter, G. D. and Mclntyre, D. R., 1968, In vitro analysis of the binding of 131I-iodide to milk protein, J. Dairy Sci. 51: 1177–1181.PubMedCrossRefGoogle Scholar
  228. 226.
    Brown-Grant, K., 1961, Extrathyroidal iodide concentrating mechanisms, Physiol. Rev. 41: 189–213.Google Scholar
  229. 227.
    Allen, J. C. and Miller, W. J., 1981, Transfer of selenium from blood to milk in goats and noninterference of copper with selenium metabolism, J. Dairy Sci. 64: 814–821.PubMedCrossRefGoogle Scholar
  230. 228.
    Gasiewicz, T. A. and Smith, J. C., 1978, The metabolism of selenite by intact rat erythrocytes in vitro, Chem. Biol. Interact. 21: 299–313.PubMedCrossRefGoogle Scholar
  231. 229.
    Allen, J. C. and Miller, W. J., 1980, Selenium binding and distribution in goat and cow milk, J. Dairy Sci. 63: 526–531.PubMedCrossRefGoogle Scholar
  232. 230.
    Clarke, W. A. and Salisbury, R. L., 1980, Dimethyl sulfide in milk of lactating dairy cows fed various sulfur compounds, J. Dairy Sci. 63: 375–378.CrossRefGoogle Scholar
  233. 231.
    Vuori, E., 1979, Longitudinal study of manganese in human milk, Acta Paediatr. Scand. 68: 571–573.PubMedCrossRefGoogle Scholar
  234. 232.
    Underwood, E. J., 1971, Trace Elements in Human and Animal Nutrition, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Margaret C. Neville
    • 1
  • Jonathan C. Allen
    • 1
  • Christopher Watters
    • 2
  1. 1.Department of PhysiologyUniversity of Colorado School of MedicineDenverUSA
  2. 2.Department of BiologyMiddlebury CollegeMiddleburyUSA

Personalised recommendations