Skip to main content

SALT: Skin-Associated Lymphoid Tissues

  • Chapter
Photoimmunology

Abstract

Few tissues or organ systems are as complex as the immune system, except perhaps the nervous system. Eighty years ago, when the immune response was first described, investigators naively thought that the immune response of an organism to exogenous antigen was a unitary, if mysterious, process that equipped the individual to nullify once and forever the pathogenic potential of specific invading microorganisms. Now, as we proceed through the second “Golden Age of Immunology,” we know that the immune response is heterogenous and that it is comprised of effector mechanisms that are both molecular and cellular. Moreover, we know that specific immune responses to exogenous antigens are associated with specific tissues and organs. Thus, antigens that gain access to the body through the oral route confront the immunologic apparatus initially through the gut and elicit a relatively unique immune response at mucous membrane surfaces of the gut and perhaps of the respiratory tract. In fact, immune responses elicited by antigens within one tissue may be deleterious to the host when these antigens are encountered at or through a different, unrelated tissue or organ. Thus, the immune system appears to be comprised of subsystems, regional spheres of influence, in which a specific tissue, its constituent (sessile) cells, and complementary immunocompetent (mobile) lymphocytes are integrated into an internally consistent response to antigen. Blood-borne effector cells generated in these regional spheres can circulate to other tissues and express themselves inappropriately in the new territory. In this chapter, we will discuss the unique regional sphere of immunologic influence of the skin, which is comprised of sessile cells, mobile cells, and regional draining lymph nodes that have been designated as skin-associated lymphoid tissues (SALT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenthal AS, Shevach EM: Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement of histocompatible macrophages and lymphocytes. J Exp Med 138:1194–1207, 1974.

    Google Scholar 

  2. Steinman RM, Nussenzweig MC: Dendritic cells, features, and functions. Immunol Rev 53:127–143, 1980.

    PubMed  CAS  Google Scholar 

  3. Oppenheim JJ, Mizel SB, Meltzer MS: Biological effects of lymphocyte- and macrophage-derived mitogenic “Amplification” factors, in Cohen S, Pick E, Oppenheim JJ (eds.): Biology of the Lymphokines. New York, Academic Press. 1979.

    Google Scholar 

  4. de Sousa M: Kinetics of the distribution of thymus and bone marrow cells in the peripheral organs of the mouse: Ecotaxis. Clin Exp ImmunoI 9:371–379, 1971.

    Google Scholar 

  5. Gowans JL, Knight EJ: The route of recirculation of lymphocytes in the rat. Proc Soc Lond 159:257–270, 1964.

    CAS  Google Scholar 

  6. Guy-Grand D, Griscelli C, Vassalli P: The gut-associated lymphoid system: Nature and properties of the large dividing cells. Eur J Immunol 4:435–443, 1974.

    PubMed  CAS  Google Scholar 

  7. Bienenstock J, Johnston H, Perey DYE: Bronchial lymphoid tissue. I. Morphologic characteristics. Lab Invest 28:686–696, 1979.

    Google Scholar 

  8. Parmeley MJ, Beer AE: Colostral cell-mediated immunity and the concept of a common secretory immune system. J Dairy Sci 60:655–665, 1977.

    Google Scholar 

  9. Axehod AJ, Chandler JW: Morphologic characterisitics of conjunctival lymphoid tissue in the rabbit, in Silverstein AM, O’Conner GR (eds): Immunology and Immunopathology of the Eye. New York, Masson Publications USA, Inc, p 292, 1979.

    Google Scholar 

  10. Streilein JW: Lymphocyte traffic, T cell malignancies and the skin. J Invest Derm 71:167–171, 1978.

    PubMed  CAS  Google Scholar 

  11. Brent L, Brown JB, Medawar PB: Quantitative studies on tissue transpantation immunity. VI. Hypersensitivity reactions associated with the rejection of homografts. Proc R Soc Lond 156: 187–206, 1962.

    Google Scholar 

  12. Brent L, Medawar PB: Nature of the normal lymphocyte transfer reaction. Nature 204:90–91, 1964.

    PubMed  CAS  Google Scholar 

  13. Ramseier H, Streilein JW: Homograft sensitivity reactions in irradiated hamsters. Lancet i:622–624, 1965.

    Google Scholar 

  14. Macher E, Chase MW: Studies on the sensitization of animals with simple chemical compounds. XI. Fate of labeled picrylchloride and dinitrochlorobenzene after sensitizing injections. J Exp Med 129:81–102, 1969.

    PubMed  CAS  Google Scholar 

  15. Macher E, Chase MW: Studies on the sensitization of animals with simple chemical compounds. XII. Influence of excision of allergenic depots on onset of delayed hypersensitivity and tolerance. J Exp Med 129:103–121, 1969.

    PubMed  CAS  Google Scholar 

  16. Silberberg I: Apposition of mononuclear cells to Langerhans cells in contact allergic reactions. Acta Derm Venereal 53:1–12, 1973.

    CAS  Google Scholar 

  17. Katz SI, Tamaki K, Sachs DH: Epidermal Langerhans cells axe derived from cells originating in bone marrow. Nature 282:324–326, 1979.

    PubMed  CAS  Google Scholar 

  18. Stingl G, Wolff-Schreiner EC, Pichler WJ, et al: Epidermal Langerhans cells bear Fc and C3 receptors. Nature 268:245–246, 1977.

    PubMed  CAS  Google Scholar 

  19. Rowden G, Phillips TM, Delovitch TL: Expression of la antigens by murine keratinizing epithelial Langerhans cells. Immunogenetics 7:465–478, 1978.

    PubMed  CAS  Google Scholar 

  20. Klareskog L, Tjernlund J, Forsum J, et al: Epidermal Langerhans cells express I antigens. Nature 268:247–248, 1977.

    Google Scholar 

  21. Stingl G, Katz SI, Clement L, et al: Immunologic functions of la-bearing epidermal Langerhans cells. J Immunol 121:2005–2013, 1978.

    PubMed  CAS  Google Scholar 

  22. Toews GB, Bergstresser PR, Streilein JW: Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol 124:445–453, 1980.

    PubMed  CAS  Google Scholar 

  23. Ptak W, Rozyeka D, Askenaze PW, et al: The role of antigen-presenting cells in the development and persistence of contact sensitivity. J Exp Med 151:362–375, 1980.

    PubMed  CAS  Google Scholar 

  24. Tamaki K, Fujiwara H, Katz SI: The role of epidermal cells in the induction and suppression of contact sensitivity. J Invest Derm 76:275–278, 1981.

    PubMed  CAS  Google Scholar 

  25. Watson J, Mochizuki D: Interleukin 2: A class of T cell growth factors. Immunol Rev 51:257–277, 1980.

    PubMed  CAS  Google Scholar 

  26. Luger TA, Stalder BM, Katz SI, et al: Epidermal cell (keratinocyte)-derived thymocyte- activating actor (ETAF). J Immunol 127:1493–1498, 1981.

    PubMed  CAS  Google Scholar 

  27. Sauder DN, Carter D, Katz SI, et al: Epidermal cell production of thymocyte-activating factor. Clin Res 29:285A, 1981.

    Google Scholar 

  28. Lutzner M, Edelson R, Schein P, et al: Cutaneous T-cell lymphoma: The Sezary syndrome, mycosis fungoides, and related disorders. Ann Int Med 83:534–552, 1975.

    PubMed  CAS  Google Scholar 

  29. Yamanaka N, Ishii Y, Koshiba H, et al: A study of surface markers in non-Hogdkin’s lymphoma by using anti-T and anti-B lymphocyte sera. Cancer 47:311–318, 1981.

    PubMed  CAS  Google Scholar 

  30. Long JC, Mihm MC, Qazi R: Malignant lymphoma of the skin: A clinicopathologic study of lymphoma other than mycosis fungoides diagnosed by skin biopsy. Cancer 38:1282–1296, 1976.

    PubMed  CAS  Google Scholar 

  31. Nezelof C, Diebold N, Rousseau-Merck MR: Ig surface receptors of histiocytosis X cells in vitro. J Pathol 122:105–113, 1977.

    PubMed  CAS  Google Scholar 

  32. Basset F, Turiaf MJ: Identification par la microscopie electronique de particules de nature probablement viral dans les liasons granulomateuses d’une histocytose ‘x’ pulmonale. CR Acad Sci 264:3701–3709, 1965.

    Google Scholar 

  33. Morales AR, Fine G, Horn RC, et al: Langerhans cells in a localized lesion of the eosinophilic granuloma type. Lab Invest 20:412–417, 1969.

    PubMed  CAS  Google Scholar 

  34. Clendenning WE, Rappaport, HW: Report of the committee on pathology of CTCL. Cancer Treat Rep 63:719–724, 1979.

    PubMed  CAS  Google Scholar 

  35. Brouet JC, Flandrin G, Sasportes M, et al: Chronic lymphocytic leukemia of T-cell origin. Lancet ii:890–893, 1975.

    Google Scholar 

  36. Uchiyama T, Yodoi J, Sagawa K, et al: Adult T-cell leukemia: Clinical and hematologic features of 16 cases. Blood 50:481–492, 1977.

    PubMed  CAS  Google Scholar 

  37. Edelson RL: CTCL: Mycosis fungoides, Sezary syndrome, and other variants. J Am Acad Dermatol 2:89–106, 1980.

    PubMed  CAS  Google Scholar 

  38. Broder S, Edelson RL, Lutzner MA, et al: The Sezary syndrome: A malignant proliferation of helper T cells. J Clin Invesf 58:1497–1306, 1976.

    Google Scholar 

  39. Berger CL, Warburton D, Raafat J, et al: Cutaneous T-cell lymphoma: Neoplasms of T cells with helper activity. Blood 53:642–651, 1979.

    PubMed  CAS  Google Scholar 

  40. Haynes BF: Human T lymphocyte antigens as defined by monoclonal antibodies. Immunol Rev 57:127–161, 1981.

    PubMed  CAS  Google Scholar 

  41. Kung PC, Berger CL, Goldstein G, et al: Cutaneous T cell lymphoma: Characterization by monoclonal antibodies. Blood 57:261–265, 1981.

    PubMed  CAS  Google Scholar 

  42. Uchiyama T, Sagawa K, Takatsuki K, et al: Effect of adult T-cell leukemia cells on mitogen-induced normal B-cell differentiation. Clin Immunol Immunopathol 10: 24–34, 1978.

    PubMed  CAS  Google Scholar 

  43. Boumsell L, Bernard A, Reinherz EL, et al: Surface antigens on malignant Sezary and T-CLL cells correspond to those of mature T cells. Blood 57:526–530, 1981.

    PubMed  CAS  Google Scholar 

  44. Andrew W, Andrew NL: Lymphocytes in the normal epidermis of rats and of man. Anat Rec 104:217–232, 1949.

    PubMed  CAS  Google Scholar 

  45. Lemmel EM, Fichtelius KE: Lifespan of lymphocytes within intestinal epithelium, Peyer’s patch epithelium, epidermis, and liver of mice. Int Arch Allergy Appl Immunol 41:716–728, 1971.

    PubMed  CAS  Google Scholar 

  46. Smith JB, Mcintosh GH, Morris B: The traffic of cells through tissues: A study of peripheral lymph in sheep. J Anat 107:87–100, 1970.

    PubMed  CAS  Google Scholar 

  47. Miller HRP, Adams EP: Reassortment of lymphocytes in lymph from normal and allografted sheep. Am J Path 57:59–80, 1977.

    Google Scholar 

  48. Hall JG: Studies of the cells in the afferent and efferent lymph of lymph nodes draining the site of skin homografts. J Exp Med 125:737–754, 1967.

    PubMed  CAS  Google Scholar 

  49. Scollay R, Hall JR, Orlans E: Studies of the lymphocytes of sheep. II. Some properties of cells in various compartments of the recirculating lymphocyte pool. Eur J Immunol 6:121–126, 1976.

    PubMed  CAS  Google Scholar 

  50. Engeset A, Froland SS, Brewer K: Low lymphocyte count and few B-lymphocytes in peripheral lymph of patients with CLL. Scand J Haematol 13:93–97, 1974.

    PubMed  CAS  Google Scholar 

  51. Hoefsmit ECM, Balfour BM, Kamperdigk EWA, et al: Cells containing Birbeck granules in the lymph and the lymph node. Adv Exp Med Biol 114:389–394, 1979.

    Google Scholar 

  52. Solomon JB,: Ontogenesis of immunological competence of lymphocytes in chicken skin. Transplantation 1:327–333, 1963.

    PubMed  CAS  Google Scholar 

  53. Barker CF, Billingham RE: Immunologically competent passenger cells in mouse skin. Transplantation 14:525–527, 1972.

    PubMed  CAS  Google Scholar 

  54. Alario A, Ortoune JP, Schmitt D, et al: Lichen planus: Study with anti-HTLA serum on frozen tissue sections. Br J Dermatol 98:601–604, 1978.

    PubMed  CAS  Google Scholar 

  55. Bjerke JR, Krogh HK: Identification of mononuclear cells in situ in lesions of lichen planus. Br J Dermatol 98:605–610, 1978.

    PubMed  CAS  Google Scholar 

  56. Haynes BF, Hensley LL, Jegasothy BV: Phenotypic characterization of skin infiltrating T cells in cutaneous T-cell lymphoma: Comparison with benign cutaneous T-cell infiltrates. Blood 60:463–467, 1982.

    PubMed  CAS  Google Scholar 

  57. Asherson GL, Allwood GG: Inflammatory lymphoid cells; Cells in immunized lymph nodes that invade sites of inflammation. Immunology 22:493–501, 1972.

    Google Scholar 

  58. Asherson GL, Allwood GG, Mayhew B,: Movement of T blasts in the draining lymph nodes to sites of inflammation. Immunology 25:485–493, 1973.

    PubMed  CAS  Google Scholar 

  59. Gowans JL, McGregor DD, Cowen DM,: Initiation of immune responses by small lymphocytes. Nature 196:651–655, 1962.

    PubMed  CAS  Google Scholar 

  60. Koster FT, McGregor DD, Mackaness GB: The mediator of cellular immunity. II. Migration of immunologically committed lymphocytes into inflammatory exudates. J Exp Med 133:400–409, 1971.

    PubMed  CAS  Google Scholar 

  61. Prendergast RA: Cellular specificity in the homograft reaction. J Exp Med 119:377–388, 1964.

    PubMed  CAS  Google Scholar 

  62. Bhan AK, Reinisch CL, Levey RH, et al: T-cell migration into allografts. J Exp Med 141:1210–1215, 1975.

    PubMed  CAS  Google Scholar 

  63. Liden S: The mononuclear-cell infiltrate in allergic contact dermatitis. 2. Selective accumulation of cells from the bone marrow. Acta Pathol Microbiol Scand 70:58–66, 1967.

    PubMed  CAS  Google Scholar 

  64. Liden S: The mononuclear-cell infiltrate in allergic contact dermatitis. 3. Selective accumulation of cells from lymph nodes. Acta Pathol Microbiol Scand 70:363–370, 1967.

    PubMed  CAS  Google Scholar 

  65. Ottaway CA, Parrott DMV: Regional blood flow and its relationship to lymphocyte and lymphoblast traffic during a primary immune reaction. J Exp Med 150:218–230, 1979.

    Google Scholar 

  66. Gershon RK, Askenase RW, Gershon MD: Requirements for vasoactive amines for production of delayed-type hypersensitivity reactions. J Exp Med 142:732–744, 1975.

    PubMed  CAS  Google Scholar 

  67. Rose ML, Parrott DMV: Vascular permeability and lymphoblast extravasation in inflamed skin are not related. Cell Immunol 33:62–71, 1977.

    PubMed  CAS  Google Scholar 

  68. Sprent J, Miller JFAP: Fate of H-2 activated T lymphocytes in syngeneic hosts. II. Residence in recirculating lymphocyte pool and capacity to migrate to allografts. Cell Immunol 21: 303–313, 1976.

    PubMed  CAS  Google Scholar 

  69. Tilney NL, Ford WL: The migration of rat lymphoid cells into skin grafts: Some sensitized cells localize preferentially to specific allografts. Transplantation 17:12–21, 1974.

    PubMed  CAS  Google Scholar 

  70. Emeson EE: Migratory behavior of lymphocytes with specific reactivity to alloantigens. II. Selective recruitment to lymphoid cell allografts and their draining lymph nodes. J Exp Med 147:13–24, 1978.

    PubMed  CAS  Google Scholar 

  71. Turke JL, Oort J: A histological study of the early stages of the development of the tuberculin reaction after passive transfer of cells labelled with [3H] thymidine. Immunology 6:140–147, 1963.

    Google Scholar 

  72. McCluskey RT, Benacerraf B, McCluskey JW: Studies on the specificity of the cellular infiltrate in delayed hypersensitivity reactions. J Immunol 90:466–478, 1963.

    PubMed  CAS  Google Scholar 

  73. de Sousa M: Lymphocyte Circulation: Experimental and Clinical Aspects, Chapter 4, Circulation of lymphocytes within the lymphoid system, New York, John Wiley & Sons, p. 79, 1981.

    Google Scholar 

  74. Freitas AA, de Sousa MAB,: The role of cell interactions in the control of lymphocyte traffic. Cell Immunol 22:345–350, 1976.

    PubMed  CAS  Google Scholar 

  75. Ford WL, Sedgley M, Sparshott SM, et al: The migration of lymphocytes across specialized vascular endothelium. II. The contrasting consequences of treating lymphocytes with trypsin or neuraminidase. Cell Tissue Kinet 9:351–361, 1976.

    PubMed  CAS  Google Scholar 

  76. Woodruff J: Role of lymphocyte surface determinants in lymph node homing. Cell Immunol 13:378–385, 1974.

    PubMed  CAS  Google Scholar 

  77. Anderson ND, Anderson AO, Wyllie RG: Specialized structure and metabolic activities of high endothelial venules in rat lymphatic tissue. Immunology 31:455–475, 1976.

    PubMed  CAS  Google Scholar 

  78. Andrews P, Ford WL, Stoddert RW: Metabolic studies of high-walled endothelium of past capillary venules in rat lymph nodes. Ciba Found Symp 71:211–230, 1980.

    PubMed  CAS  Google Scholar 

  79. de Sousa M: Lymphocyte Circulation: Experimental and Clinical Aspects, Chapter 8, A circulation of lymphocytes: Reflections on the questions of how and why, New York, John Wiley & Sons, p. 197, 1981.

    Google Scholar 

  80. Fahy VA, Gerber HA, Morris B, et al: The function of lymph nodes in the formation of lymph, in Tmka B (ed): Essays in the Anatomy and Physiology of Lymphoid Tissues, Monographs in Allergy. Basel, Karger, p. 82, 1980.

    Google Scholar 

  81. Parrott DMV, de Sousa MAB, East J: Thymus-dependent areas in the lymphoid organs of neonatally thymectomized mice. J Exp Med 123:191–203, 1966.

    PubMed  CAS  Google Scholar 

  82. de Sousa MAB, Parrott DMV, Pantelouris EM: The lymphoid tissues in mice with congenital aplasia of the thymus. Clin Exp Immunol 4:637–644, 1969.

    PubMed  Google Scholar 

  83. Goldschneider I, McGregor DD: Migration of lymphocytes and thymocytes in the rat. I. The route of migration from blood to spleen and lymph nodes . J Exp Med 127: 155–168, 1968.

    PubMed  CAS  Google Scholar 

  84. de Sousa MAB, Prithard H: The cellular basis of immunological recovery in nude mice after thymus grafting. Immunology 26:769–776, 1974.

    PubMed  Google Scholar 

  85. Graham RC, Shannon SL: Peroxidase arthritis. II. Lymphoid cell-endothelial cell interactions during a developing immunologic inflammatory response. Am J Pathol 69:7–24, 1972.

    PubMed  CAS  Google Scholar 

  86. Stamper HB Jr, Woodruff JJ: Lymphocyte homing into lymph nodes: in Vitro demonstration of selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med 144:828–833, 1977.

    Google Scholar 

  87. Stamper HB Jr, Woodruff JJ: An in vitro model of lymphocyte homing. I. Characterization of the interaction between TDL and specialized high endothelial venules of lymph nodes. J Immunol 119:772–780, 1977.

    PubMed  Google Scholar 

  88. Woodruff JJ, Katz IM, Lucas LE, et al: An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized HEV of lymph nodes. J Immunol 119:1603–1609, 1977.

    PubMed  CAS  Google Scholar 

  89. Kuttner BJ, Woodruff JJ,: Adherence of recirculating T and B lymphocytes to high endothelium of lymph nodes in vitro. J Immunol 123:1221–1423, 1979.

    Google Scholar 

  90. Butcher EC, Scollay RG, Weissman IL,: Organ specificity of lymphocyte migration: Mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. Eur J Immunol 10:556–561, 1980.

    PubMed  CAS  Google Scholar 

  91. Janossy G, Tidman N, Selby WS, et al: Human T lymphocytes of inducer and suppressor type occupy different microenvironments. Nature 288:81–84, 1980.

    PubMed  CAS  Google Scholar 

  92. Janossy G, Tidman N, Papageorgiuo ES, et al: Distribution of T lymphocyte subsets in the human bone marrow and thymus: An analysis with monoclonal antibodies. J Immunol 126:1608–1613, 1980.

    Google Scholar 

  93. Janossy G, Duke O, Poulter LW, et al: Rheumatoid arthritis: A disease of T-lymphocyte/macrophage immunoregulation. Lancet ii:839–842, 1981.

    Google Scholar 

  94. Spry CJF, Pflug J, Janossy G, et al: “Veiled” cells with “la-like” membrane antigens in human afferent lymph. Clin Exp Immunol 39:750–755, 1980.

    Google Scholar 

  95. Ryan EA, Sanderson KV, Bartak P, et al: Can mycosis fungoides begin in the epidermis? A hypothesis. Br J Dermatol 88:419–422, 1973.

    PubMed  CAS  Google Scholar 

  96. Rowden G, Lewis MG: Langerhans cells: Involvement in the pathogenesis of mycosis fungoides. Br J Dermatol 95:665–672, 1976.

    PubMed  CAS  Google Scholar 

  97. Chu A, Kung P, Edelson R: Dermal Langerhans cells in cutaneous lymphoma: An in situ study using monoclonal antibodies. J Invest Dermatol 76:324, 1981.

    Google Scholar 

  98. McCutcheon M: Chemotaxis in leukocytes. Physiol Rev 26:319–336, 1946.

    PubMed  CAS  Google Scholar 

  99. Keller HU, Wilkinson PC, Abercrombie M, et al: A proposal for the definition of terms related to locomotion of leucocytes and other cells. Clin Exp Immunol 27:377–380, 1977.

    PubMed  CAS  Google Scholar 

  100. Parrott DMV: Lymphocyte locomotion: The role of chemokinesis and chemotaxis. Monogr Allergy 16:173–186, 1980.

    PubMed  CAS  Google Scholar 

  101. Fidler IJ: Selection of successive tumor lines for metastasis. Nature (New Biol) 242: 148–149, 1973.

    CAS  Google Scholar 

  102. Fidler I J, Nicolson GL: Organ selectivity for implantation, survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57:1199–1202, 1976.

    PubMed  CAS  Google Scholar 

  103. Nicolson GL, Brunson KW,: Organ specificity of malignant B16 melanomas: in Vivo selection for organ preference of blood-borne metastasis. Gann Monogr Cancer Res 20:15–24, 1977.

    Google Scholar 

  104. Brunson KW, Beattie G, Nicolson GL,: Selection and altered tumor cell properties of brain-colonizing metastatic melanoma. Nature 272:543–545, 1978.

    PubMed  CAS  Google Scholar 

  105. Nicolson GL: Experimental tumor metastasis: Characteristics and organ specificity. Bioscience 28:441–447, 1978.

    Google Scholar 

  106. Fidler I J, Kripke ML: Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895, 1977.

    PubMed  CAS  Google Scholar 

  107. Nicolson GL, Winkelhake JL, Nussey AC: Some in vitro properties of tumor variants selected in vivo for enhanced metastasis, in Weiss L (ed): Fundamental Aspects of Metastasis. Amsterdam, North-American Publishing Co., p. 291., 1976.

    Google Scholar 

  108. Griscelli C, Vassalli P, McCluskey RT: The distribution of large dividing lymph node cells in syngeneic recipients after intravenous injection. J Exp Med 130:1427–1451, 1969.

    PubMed  CAS  Google Scholar 

  109. Rose ML, Parrott DMV, Bruce RG: Migration of lymphoblasts to the small intestine. Immunology 31:723–730, 1976.

    PubMed  CAS  Google Scholar 

  110. Rose ML, Parrott DMV, Bruce RG: Divergent migration of mesenteric and peripheral immunoblasts to sites of inflammation in the mouse. Cell Immunol 27:36–46, 1976.

    PubMed  CAS  Google Scholar 

  111. McWilliams M, Philips–Quagliata JM, Lamm ME: Characteristics of mesenteric lymph node cells homing to gut-associated lymphoid tissue in syngeneic mice. J Immunol 115:54–58, 1975.

    PubMed  CAS  Google Scholar 

  112. McWilliams M, Philips–Quagliata JM, Lamm ME: Mesenteric lymph node B lymphoblasts which home to small intestine are precommitted to IgA synthesis. J Exp Med 145:866–875, 1977.

    PubMed  CAS  Google Scholar 

  113. Hall JG, Hopkins J, Orlans E: Studies on the lymphocytes of sheep. III. Destination of lymph-borne immunoblasts in relation to their tissue of origin. Eur J Immunol 1:30–31, 1977.

    Google Scholar 

  114. Bienenstock J, Befus AD, McDermott J,: Mucosal immunity. Monogr Allergy 16:1–18, 1980.

    PubMed  CAS  Google Scholar 

  115. Noonan FP, Kripke ML, Pederson GM, et al: Suppression of contact hypersensitivity in mice by ultraviolet irradiation is associated with defective antigen presentation. Immunology 53:527–533, 1981.

    Google Scholar 

  116. Letvin NL, Nepom GT, Greene MI, et al: Loss of la-bearing splenic adherent cells after whole body ultraviolet irradiation. J Immunol 125:2550–2554, 1980.

    PubMed  CAS  Google Scholar 

  117. Anderson AO, Warren JT, Gasser DL,: Presence of lymphoid dendritic cells in thoracic duct lymph from Lewis rats. Transplant Proc 13:1460–1468, 1981.

    PubMed  CAS  Google Scholar 

  118. Freitas AA, Rose ML, Parrott DVM: Mesenteric and peripheral lymph nodes in the mouse: A common pool of small recirculating T lymphocytes. Nature 270:731–734, 1977.

    PubMed  Google Scholar 

  119. Cahill RNP, Poskitt DC, Frost H, et al: Two distinct pools of recirculating T lymphocytes: Migrating properties of nodal and intestinal T lymphocytes. J. Exp Med 145: 420–429, 1977.

    PubMed  CAS  Google Scholar 

  120. Cahill RNP, Trnka Z: Growth and development of recirculating lymphocytes in the sheep fetus. Monogr Allergy 16:38–49, 1980.

    PubMed  CAS  Google Scholar 

  121. Guy-Grand D, Griscelli C, Vassalli P,: The mouse gut T lymphocyte, a novel type of T cell. Nature, origin and traffic in mice in normal and graft-versus-host conditions. J Exp Med 148:1661–1677, 1978.

    PubMed  CAS  Google Scholar 

  122. Beller DI, Keily J–M, Unanue ER,: Regulation of macrophage populations. I. Preferential induction of la-rich peritoneal exudates by immunologic stimuli. J Immunol 124:1426–1432, 1980.

    PubMed  CAS  Google Scholar 

  123. Malmnas-Tjernlund U,: La-like antigens in lichen planus. Acta Derm Venereol 60:309–314, 1980.

    Google Scholar 

  124. Tjernlund UM,: Epidermal expression of HLA-DR antigens in mycosis fungoides. Arch Dermatol Res 261:81–86, 1978.

    PubMed  CAS  Google Scholar 

  125. Mason DW, Dallamn M, Barclay AN: Graft-versus-host disease induces expression of la antigen in rat epidermal cells and gut epithelium. Nature 293:150–151, 1981.

    PubMed  CAS  Google Scholar 

  126. Lampert IA, Suitters AJ, Chisholm PM,: Expression of la antigen on epidermal keratinocytes in graft-versus-host disease. Nature 293:149–150, 1981.

    PubMed  CAS  Google Scholar 

  127. Schlossman SF, Chess LR, Humphreys RE, et al: Distribution of la-like molecules on the surface of normal and leukemic cells. Proc Natl Acad Sci USA 73:1288–1292, 1976.

    PubMed  CAS  Google Scholar 

  128. Evans RL, Faldetta TJ, Humphreys RE, et al: Peripheral human T cells sensitized in mixed leukocyte culture synthesize and express la-lie antigens. J Exp Med 148:1440–1445, 1978.

    PubMed  CAS  Google Scholar 

  129. Reinherz EL, Kung PC, Pesando JT, et al: la determinants on human T-cell subsets defined by monoclonal antibody. J Exp Med 150:1472–1482, 1979.

    PubMed  CAS  Google Scholar 

  130. Rubenfeld MR, Silverstone AE, Knowles DM, et al: Induction of lymphocyte differentiation by epidermal cultures. J Invest Dermatol 77:221–224, 1981.

    PubMed  CAS  Google Scholar 

  131. Bollum F, Brown M: A high molecular weight form of terminal deoxynucleotidyl transferase. Nature 278:191–192, 1979.

    PubMed  CAS  Google Scholar 

  132. Deibel M, Coleman M: Purification of a high molecular weight human terminal deoxynucleotidyl transferase. J Biol Chem 254:8634–8640, 1979.

    PubMed  CAS  Google Scholar 

  133. Silverstone A, Sun L, Witte O, et al: Biosynthesis of murine terminal deoxynucleotidyl transferase. J Biol Chem 255:791–796, 1980.

    PubMed  CAS  Google Scholar 

  134. Banton R, Goldschneider I, Bollum F: The distribution of TdT among subsets of thymocytes in the rat .J Immunol 116:462–468, 1976.

    Google Scholar 

  135. Gallo R: Terminal transferase and leukemia. N Engl J Med 292:804–805, 1975.

    PubMed  CAS  Google Scholar 

  136. Haynes BF, Hensley LL, Jegasothy BV,: Differentiation of human T lymphocytes: II. Phenotypic difference in skin and blood malignant T cells in cutaneous T cell lymphoma. J Invest Dermatol 78:323–326, 1982.

    PubMed  CAS  Google Scholar 

  137. McKenzie JL, Fabre JW,: Human Thy-1: Unusual localization and possible functional significance in lymphoid tissues. J Immunol 126:843–850, 1981.

    PubMed  CAS  Google Scholar 

  138. Ritter MA, Morris RJ,: Thy-1 antigen: Selective association in lymphoid organs with the vascular basement membrane involved in lymphocyte recirculation. Immunology 39:85–92, 1980.

    PubMed  CAS  Google Scholar 

  139. Owen RL: Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: An ultrastructural study. Gastroenterology 72: 440–451, 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Publishing Corporation

About this chapter

Cite this chapter

Streilein, J.W., Tigelaar, R.E. (1983). SALT: Skin-Associated Lymphoid Tissues. In: Parrish, J.A., Kripke, M.L., Morison, W.L. (eds) Photoimmunology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3670-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3670-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3672-3

  • Online ISBN: 978-1-4613-3670-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics