Skip to main content

Photofragment Spectroscopy of the NO2 Dissociation

  • Conference paper
Book cover Energy Storage and Redistribution in Molecules

Abstract

The photodissociation is an important elementary process in the interaction of light with molecules. In the investigation of the dynamics of the photodissociation special attention has been directed to the question how the excess energy is distributed among the dissociation products and among their different degrees of freedom. The excess energy is the difference between the dissociating photon energy and the necessary dissociation energy of the molecule. One of the most successful experimental attempts for clarifying these questions is molecular beam photofragment spectroscopy with mass spectrometric time-of-flight fragment detection [1,2], This method is generally applicable and yields inter-fragment recoil and momentum distributions. Quantum state specific measurements are normally not possible because of limitation of the velocity resolution. With this method the dissociation of NO2 into NO and O has been previously investigated by Busch and Wilson [l] at λ = 347 nm. The translational energy resolution achieved was about 200 cm-1. A theoretical interpretation of their results has been given by Quack and Troe [3] assuming a statistical distribution of the excess energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. E. Busch and K. R. Wilson, Triatomic photofragment spectra. I. Energy partitioning in NO2 photodissociation, J. Chem. Phys. 56:3626 (1972); Triatomic photofragment spectra. II. Angular distributions from NO2 photodissociation, J. Chem. Phys. 56: 3638 (1972)

    Article  ADS  Google Scholar 

  2. M. Dzvonik, S. Yang, and R. Bersohn, Photodissociation of molecular beams of aryl halides, J. Chem. Phys. 61: 4408 (1974) M. J. Coggiola, P. A. Schulz, Y. T. Lee, and Y. R. Shen, Molecular beam study of multiphoton dissociation of SF6, Phys. Rev. Lett. 38:17 (1977)

    Article  ADS  Google Scholar 

  3. M. Quack and J. Troe, Unimolecular Processes IV: Product state distribution after dissociation, Ber. Buns. Ges. Phys. Chem. 79: 469 (1975)

    Google Scholar 

  4. M. J. Sabety - Dzvonik and R. J. Cody, The internal state distribution of CN free radicals produced in the photodissociation of ICN, J. Chem. Phys. 66: 125 (1977) A. P. Baronavski and J. R. McDonald, Electronic, vibrational and rotational energy partitioning of CN radicals from the laser photolysis of ICN at 266 nm, Chem. Phys. Lett. 45:172(1977)

    Article  ADS  Google Scholar 

  5. J. Danon, S. V. Filseth, D. Feldmann, H. Zacharias, C. H. Dugan, and K. H. Welge, Laser induced fluorescence of CH2 (ã. 1A1) produced in the photodissociation of ketene at 337 nm. The CH21A1 - \( \tilde{X} \) 3B1) energy separation, Chem. Phys. 29: 345 (1978) W. G. Hawkins and P. L. Houston, 193 nm photodissociation of H2S: The SH internal energy distribution, J. Chem. Phys. 73:297 (1980)

    Article  Google Scholar 

  6. H. Zacharias, R. Schmiedl, R. Böttner, M. Geilhaupt, U. Meier, and K. H. Welge, Spectroscopy of photodissociation products, in: “Laser Spectroscopy IV”, H. Walther and K. W. Rothe, eds., Springer Series in Optical Sciences, Vol. 21, Springer Berlin, Heidelberg, New York (1979)

    Google Scholar 

  7. H. Zacharias, M. Geilhaupt, K. Meier, and K. H. Welge, Laser photofragment spectroscopy of the NO2 dissociation at 337 nm A nonstatistical decay process, J. Chem. Phys. 74: 000 (1981)

    Article  Google Scholar 

  8. R. J. M. Bennett, Hönl-London factors for doublet transitions in diatomic molecules, Mon. Nat. R. astr. Soc. 147: 35 (1970)

    ADS  Google Scholar 

  9. K. E. J. Hallin, J. W. C. Johns, D. W. Lepard, A. W. Mantz, D. L. Wall, and K. Narahari Rao, The infrared emission spectrum of 14N16O in the overtone region and determination of Dunham coefficients for the ground state, J. Mol. Spectrosc. 74: 26 (1979)

    Article  ADS  Google Scholar 

  10. G. Herzberg, “Molecular Spectra and Molecular Structure”, Vol. III, p. 602, Van Nostrand Reinhold, New York (1966)

    Google Scholar 

  11. C. G. Stevens and R. N. Zare, Rotational analysis of the 5933 Å band of NO22 J. Mol. Spectrosc. 56: 167 (1975)

    Article  ADS  Google Scholar 

  12. J. L. Hardwick and J. C. D. Brand, The 2B12A1 system of nitrogen dioxide, Chem. Phys. Lett. 21: 458 (1973)

    Article  ADS  Google Scholar 

  13. G. P. Gillispie, A. U. Kahn, A. C. Wahl, R. P. Hosteny, and M. Krauss, The electronic structure of nitrogen dioxide. I. Multiconfiguration self-consistent-field calculation of the low-lying electronic states, J. Chem. Phys. 63: 3425 (1975)

    Article  ADS  Google Scholar 

  14. T. Carrington, Angular momentum distribution and emission spectrum of OH(2+) in the photodissociation of H2O, J. Chem. Phys. 41: 2012 (1964)

    Article  ADS  Google Scholar 

  15. K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure”, Vol. IV, p. 476, Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  16. R. C. Mitchell and J. P. Simons, Energy distribution among the primary products of photo-dissociation, Disc. Faraday Soc. 44: 208 (1967)

    Article  Google Scholar 

  17. E. Segev and M. Shapiro, Resonances in the H2O photodissociation: A converged three-dimensional quantum mechanical study, J. Chem. Phys. 73: 2001, (1980) M. Shapiro, Dynamics of photodissociation processes, Third Minerva Symposium in Chemistry, Spitzingsee, (1980)

    Article  ADS  Google Scholar 

  18. E. T. Antropov, V. N. Kolesnikov, L. Ya. Ostrovskaya, and N. N. Sobolev, Dipole moment of the γ-band system of NO as a function of the internuclear distance of transition, Opt. Spectrosc. (USSR) 22: 109 (1967)

    ADS  Google Scholar 

  19. H. M. Poland and H. P. Broida, Fluorescence of the γ, ε and δ systems of nitric oxide; Polarization and use of calculated intensities for spectrometer calibration, J. Quant. Spectrosc. Radiat. Transfer 11: 1863 (1971)

    Article  ADS  Google Scholar 

  20. R. W. Nicholls, Franck-Condon factors to high vibrational quantum numbers IV: NO band systems, J. Res. Nat. Bur. Stand. Sect. A 68: 535 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Zacharias, H., Meier, K., Welge, K.H. (1983). Photofragment Spectroscopy of the NO2 Dissociation. In: Hinze, J. (eds) Energy Storage and Redistribution in Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3667-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3667-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3669-3

  • Online ISBN: 978-1-4613-3667-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics