Advertisement

Theoretical Analysis of Experimental Probes of Dynamics of Intramolecular Vibrational Relaxation

  • Karl F. Freed
  • Abraham Nitzan

Abstract

The phenomenon of intramolecular vibrational relxation is postulated to play a central role in the description of unimolecular reaction processes of polyatomic molecules. For instance, the famous RRKM theory is generally presented as being predicated on the assumption that vibrational energy is rapidly randomized among the different vibrational degrees of freedom on time scales which are rapid compared to the decomposition times of these molecules.1, 2 A number of different theoretical approaches have been undertaken to understand better the phenomena of vibrational energy scrambling in molecules. Other talks at this conference discuss the transition from quasiperiodic to stochastic behavior in classical mechanical descriptions of vibrational energy in molecules with the hopes that in an as yet undefined fashion this is somehow relevant to the description of energy randomization processes occurring in real molecules under experimental conditions. This lecture is concerned with providing a theoretical basis for understanding recent experiments on intra-molecular vibrational relaxation.

Keywords

Zeroth Order Vibrational Energy Intermediate Case Vibrational Relaxation Double Exponential Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley, Newufork, 1972.Google Scholar
  2. I. Oref and G. S. Rabinovitch, Acc. Chem. Res. 12, 166 (1979) and references therein.CrossRefGoogle Scholar
  3. 3.
    K. F. Freed, Faraday Discuss. Chem. Soc. 67, 231 (1979).CrossRefGoogle Scholar
  4. 4.
    J. D. Rybrant and B. S. Rabinovitch, J. Chem. Phys. J54, 2275 (1971); J. Phys Chem. 75, 2164 (1971).ADSGoogle Scholar
  5. 5.
    J. B. Hopkins, D. E. Powers and R. E. Smalley, J. Chem. Phys. 71 3886 (1979); 72, 2905 (E) (1980); (b) J. B. Hopkins, D. E.Powers, S. Mukamel, and R. E. Smalley, J. Chem. Phys. 72:, 5049 (1980); (c) J. B. Hopkins, D. E. Powers and R. E. Smalley, J. Chem. Phys. 73, 683 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    S. Mukamel and R. E. Smalley, J. Chem. Phys. 73, 4156 (1980); S. Mukamel, Solid-State Sci. 18, 237 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    S. Okajima and E. C. Lim, Chem. Phys. Lett. 37, 403 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    R. K. Sander, B. Soep and R. N. Zare, J. Chem. Phys. 64, 1242 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    B. Soep, C. Michel, A. Tramer, and L. Lindqvist, Chem. Phys. 2, 293 (1973).CrossRefGoogle Scholar
  10. 10.
    J. C. Hsieh, C. S. Huang and E. C. Lim, J. Chem. Phys. 60, 4345 (1974):ADSCrossRefGoogle Scholar
  11. 11.
    J. W. Perry and A. H. Zewail, J. Chem. Phys. 70, 582 (1979); Chem. Phys. Lett. 65, 31 (1980).Google Scholar
  12. 12.
    R. G. Bray and M. J. Berry, J. Chem. Phys. 71, 4909 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    J. P. Maier, A. Seilmeir, A. Laubereau and W. Kaiser, Chem. Phys. Lett. 46, 527 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    B. Kopainsky and W. Kaiser, Chem. Phys. Lett. 66, 39 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Coveleskie, D. A. Dolson and C. S. Parmenter, J. Chem. Phys. 72, 5774 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    H. S. Kwok and E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    T. F. Deutch and S. J. Brueck, Chem. Phys. Lett. 54, 258 (1978); D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).Google Scholar
  18. 18.
    K. F. Freed, Topics Appl. Phys. 15, 23 (1976); Acc. Chem. Res. 11, 74 (1976); Adv. Chem. Phys. 42, 207 (1980).CrossRefGoogle Scholar
  19. 19.
    S. Mukamel and J. Jortner, in Excited States, ed. E. C. Lim, Academic Press, New York, 1977.Google Scholar
  20. 20.
    P. Avouris, W. M. Gelbart and M. A. El-Sayed, Chem. Rev. 77, 793 (1977).CrossRefGoogle Scholar
  21. 21.
    K. F. Freed, Chem. Phys. Lett. 42, 600 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    S. Mukamel and J. Jortner, J. Chem. Phys. 65, 5204 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    K. F. Freed and A. Nitzan, J. Chem. Phys. 73, 4765 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    S. A. Rice, this volume.Google Scholar
  25. 25.
    K. F. Freed, J. Chem. Phys. 52, 1345 (1970).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A. Nitzan, J. Jortner and P. Rentzepis, Proc. R. Soc. (London) A37, 367 (1972); A. Frad, F. Lahmani, A. Tramer and C. Trie, J. Chem. Phys. 60, 4419 (1974); R. van der Werf and J. Komman-deur, Chem. Phys. 16, 125 (1976).ADSGoogle Scholar
  27. 27.
    K. F. Freed (unpublished); G. Atkinson (private communication); S. Leach (private communication).Google Scholar
  28. 28.
    B. Carneli, I. Scheck, A. Nitzan and J. Jortner, J. Chem. Phys. 71, 1928 (1980); W. M. Gelbart, D. F. Heller and M. L. Elert, Chem. Phys. 71, 116 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    A. Villaeys and K. F. Freed, Chem. Phys., 13, 271 (1976).CrossRefGoogle Scholar
  30. 30.
    P. S. H. Fitch, C. A. Haynam and D. H. Levy, J. Chem. Phys. 73, 1064 (1980);(in press).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Karl F. Freed
    • 1
  • Abraham Nitzan
    • 2
  1. 1.The James Franck Institute and Department of ChemistryThe University of ChicagoChicagoUSA
  2. 2.Institute of ChemistryTel Aviv UniversityRamat-Aviv, Tel AvivIsrael

Personalised recommendations