Advertisement

Electron Correlation and the Mechanism of Atomic Autoionization

  • R. Stephen Berry
Conference paper

Abstract

This review deals with our present understanding of the nature of the quantum states of two-electron atoms. The exposition, a description of new insights into the dynamics of electron correlation and origins of correlation-induced auto- ionization, is in large part a brief summary of a discussion given recently by Paul Rehmus and myself (Rehmus and Berry, 1981) and of the earlier studies of stationary states of two- electron atoms that led to the analysis of autoionization (Rehmus and Berry, 1979); Rehmus et al., 1978a,b). The essence of the approach is the construction of the reduced two-particle density ρ (r1,r212), forming the conditional probability density
$$ \rho \left( {{{\text{r}}_{2}},{\theta _{{12}}}|{r_{1}} = \alpha } \right) = \frac{{\rho \left( {{{\text{r}}_{1}} = \alpha ,{{\text{r}}_{2}},{\theta _{{12}}}} \right)}}{{\left[ {\int {{\text{d}}{{\text{r}}_{2}}\int {{\text{d}}{\theta _{{12}}}\rho \left( {{{\text{r}}_{1}},{{\text{r}}_{2}},{\theta _{{12}}}} \right)} } } \right]}}. $$
(1)
This distribution is the probability of finding particle 2 at distance r2 from the origin (essentially the nucleus, in a two-electron atom) and at angle θ12 from the vector \( {\vec{r}_{2}} \) when the distance r1 of particle 1 from the origin has the value α.

Keywords

Transition Amplitude Electron Correlation Nodal Line Feshbach Resonance Conditional Probability Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banyard, K.E., and Ellis, J.D., 1972, Molec. Phys. 24: 1291.ADSCrossRefGoogle Scholar
  2. Banyard, K.E., and Ellis, J.D., 1975, J. Phys. B 14: 2311.ADSCrossRefGoogle Scholar
  3. Burke, P.G., and Taylor, A.J., 1966, Proc. Phys. Soc. 88: 549.ADSCrossRefGoogle Scholar
  4. Cooper, J.W., Fano, U., and Prats, F., 1963, Phys. Rev. Lett. 13: 518.ADSCrossRefGoogle Scholar
  5. Coulson, C.A., and Neilson, A.H., 1961, Proc. Phys. Soc. 78: 831.MathSciNetADSMATHCrossRefGoogle Scholar
  6. Dickens, P.G., and Linnett, J.W., 1957, Quart. Revs. 11: 291.CrossRefGoogle Scholar
  7. Fano, U., 1961, Phys. Rev., 124: 1866.ADSMATHCrossRefGoogle Scholar
  8. Fano, U., 1976, Physics Today 29 (9): 32.CrossRefGoogle Scholar
  9. Fano, U., and Lin, C.D., 1974, Invited Talk for the Fourth International Conference on Atomic Physics, Heidelberg, July, 1979.Google Scholar
  10. Frankowski, K., 1967, Phys. Rev. 160: 1.ADSCrossRefGoogle Scholar
  11. Frankowski, K., and Fekeris, C.L., 1966, Phys. Rev. 146: 46.ADSCrossRefGoogle Scholar
  12. Herrick, D.R. and Kellman, M.E., 1980, Phys. Rev. A 21: 418.ADSCrossRefGoogle Scholar
  13. Herrick, D.R., Kellman, M.E., and Poliak, R.D., 1980, Phys. Rev. A 22: 1517.ADSCrossRefGoogle Scholar
  14. Herrick, D.R., and Sinanoglu, O., 1975, Phys. Rev. A 11: 97.ADSCrossRefGoogle Scholar
  15. Katriel, J., and Pauncz, R., 1977, Adv. Quantum Chem. 10: 143.ADSCrossRefGoogle Scholar
  16. Kellman, M.E., 1980, Chem. Phys. 48: 89.MathSciNetADSCrossRefGoogle Scholar
  17. Kellman, M.E., and Herrick, D.R., 1978, J. Phys. B 11: L755.ADSCrossRefGoogle Scholar
  18. Kellman, M.E., and Herrick, D.R., 1980, Phys. Rev. 22: 1536.ADSCrossRefGoogle Scholar
  19. Lin, C.D., 1974, Phys. Rev. A 10: 1986.ADSCrossRefGoogle Scholar
  20. Lin, C.D., 1976, Phys. Rev. A 14: 30.ADSCrossRefGoogle Scholar
  21. Macek, J.H., 1967, Phys. Rev. 160: 170.ADSCrossRefGoogle Scholar
  22. Macek, J.H., 1968, J. Phys. B 1: 831.ADSCrossRefGoogle Scholar
  23. Munschy, G., and Pluvinage, P., 1963, Revs.Mod. Phys. 35: 494.ADSCrossRefGoogle Scholar
  24. Rau, A.R.P., 1971, Phys. Rev. A 4: 207.ADSCrossRefGoogle Scholar
  25. Rehmus, P., and Berry, R.S., 1979, Chem. Phys. 38: 257.ADSCrossRefGoogle Scholar
  26. Rehmus, P., and Berry, R.S., 1981, Phys. Rev. A 23 (in press).Google Scholar
  27. Rehmus, P., Kellman, M.E., and Berry, R.S., 1978a, Chem. Phys. 31: 239.CrossRefGoogle Scholar
  28. Rehmus, P., Roothaan, C.C.J., and Berry, R.S., 1978b, Chem. Phys. Lett. 58: 321.ADSCrossRefGoogle Scholar
  29. Shim, I., and Dahl, J.P., 1978, Theor. Chim. Acta 48: 165.CrossRefGoogle Scholar
  30. Sinanoglu, O., and Herrick, D.R., 1975, J. Chem. Phys. 62: 886.ADSCrossRefGoogle Scholar
  31. Sinanoglu, O., and Herrick, D.R., 1976, J. Chem. Phys. 65: 850.ADSCrossRefGoogle Scholar
  32. Tatum, J.P., 1976, Int’l. J. Quant. Chem. X: 967.CrossRefGoogle Scholar
  33. Wulfman, C.E., 1973, Chem. Phys. Lett. 23: 370.ADSCrossRefGoogle Scholar
  34. Wulfman, C.E., 1976, Chem. Phys. Lett. 40: 139.ADSCrossRefGoogle Scholar
  35. Wulfman, C.E., and Kumei, S., 1973, Chem. Phys. Lett. 23: 367.ADSCrossRefGoogle Scholar
  36. Yuh, H.-J., Ezra, G.S., Rehmus, P. and Berry, R.S., 1981, (to be be published).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Stephen Berry
    • 1
  1. 1.Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations