Molecular Ions pp 309-354 | Cite as

MRD-CI Method for the Study of Low-Lying Electronic States. Application to Second-Row Molecular Ions of Type AH2+, AH+, AB+, and HAB+

  • Pablo J. Bruna
  • Gerhard Hirsch
  • Robert J. Buenker
  • Sigrid D. Peyerimhoff

Abstract

From the point of view of the Schödinger equation the theoretical description of molecular ions is not essentially different than that for neutral systems. The corresponding Hamiltonian operator simply needs to be approximately adjusted to reflect the number of electrons in the ionic species and the problem is reduced to obtaining the associated eigenvectors and eigenvalues theore of to a suitably good approximation. Furthermore for molecules containing relatively light atoms there is good reason to believe that a non-relativistic approach to electronic structure calculations suffices in virtually all types of applications, and thus a purely electrostatic Hamiltonian operator is all that is required. In addition in most situations the Born-Oppenheimer Approximation can be safely assumed in such calculations, which is to say the nuclear and electronic motion can be treated in a basically uncoupled manner (the field of fixed or clamped nuclei). In this case the nuclear kinetic energy is temporarily ignored in the calculations and the first step in the overall treatment is to solve the so-called electronic Schrödinger equation for a series of fixed nuclear conformations (clamped-nuclei approximation).

Keywords

Phosphorus Sulfide Manifold Assure Hydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta, 35, 33 (1974).CrossRefGoogle Scholar
  2. 2.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta, 39, 217 (1975).CrossRefGoogle Scholar
  3. 3.
    R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Mol. Phys., 35, 771 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    a) R. J. Buenker and S. D. Peyerimhoff, in: “Excited States in Quantum Chemistry,” NATO ASI Series C46, C. A. Nicolaides and D. R. Beck, eds., D. Reidel Publ. Co., Dordrecht, Holland (1979), p. 45. b) S. D. Peyerimhoff and R. J. Buenker, in: “Excited States in Quantum Chemistry,” NATO ASI Series C46, C. A. Nicolaides and D. R. Beck, eds., D. Reidel Publ. Co., Dordrech, Holland (1979), p. 79.Google Scholar
  5. 5.
    R. J. Buenker, S. D. Peyerimhoff, and P. J. Bruna, in: “Proc. NATO ASI Series C 67,” Menton, France (1980).Google Scholar
  6. 6.
    a) W. Meyer, J. Chem. Phys., 58, 1017 (1972); R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys., 62, 1225 (1974). b) L. S. Cederbaum, Theor. Chim. Acta, 31, 329 (1973); W. V. Niessen, G. H. F. Diercksen, L. S. Cederbaum, and W. Domcke, Chem. Phys., 18, 469 (1976). c) R. J. Bartlett and C. D. Purvis, Int. J. Quantum Chem., 14, 561 (1978).Google Scholar
  7. 7.
    E. R. Davidson, in: “The World of Quantum Chemistry,” R. Daudel and B. Pullman, eds., D. Reidel Publ. Co., Dordrecht, Holland (1974), p. 17.Google Scholar
  8. 8.
    P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys. Lett., 72, 278 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    S. D. Peyerimhoff, R. J. Buenker, and L. C. Allen, J. Chem. Phys., 45, 734 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127 (1974).CrossRefGoogle Scholar
  11. 11.
    M. E. Casida, M. M. L. Chen, R. D. MacGregor, and H. F. Schaeffer, III, Israel J. Chem., 19, 127 (1980).Google Scholar
  12. 12.
    P. J. Bruna, G. Hirsch, M. Perid, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys., 40, 521 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    G. Hirsch and P. J. Bruna, Int. J. Mass Spectrom. Ion Phys., 36, 37 (1980).CrossRefGoogle Scholar
  14. 14.
    R. N. G. Duxbury, M. Horani, and J. Rostas, Mol. Phys., 22, 977 (1972).ADSGoogle Scholar
  15. 15.
    a) J. Delwiche, P. Natalis, and J. E. Collin, Int. J. Mass Spectrom. Ion Phys., j, 443 (1970); J. Delwiche and P. Natalis, Chem. Phys. Lett., 5, 564 (1970). b) D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, “Molecular Photoelectron Spectroscopy,” Wiley Interscience, London (1970).Google Scholar
  16. 16.
    J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys., J31, 161 (1979).CrossRefGoogle Scholar
  17. 17.
    W. Meyer, Int. J. Quantum Chem. Symp., 5 341 (1971).CrossRefGoogle Scholar
  18. 18.
    J. A. Smith, P. Jorgensen, and Y. Ohrn, J. Chem. Phys., 62, 1285 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    S. D. Peyerimhoff and R. J. Buenker, Chem. Phys., 42, 167 (1979).CrossRefGoogle Scholar
  20. 20.
    B. H. Mahan and T. M. Sloane, J. Chem. Phys., 59, 5661 (1973); D. H. Liskow, C. F. Bender, and H. F. Schaeffer, III, J. Chem. Phys., 61, 2507 (1974); D. Gervy and G. Verhaegen, Int. J. Quantum Chemistry, 12, 115 (1977).Google Scholar
  21. 21.
    S. J. Dunlavey, J. M. Dyke, N. K. Fayad, N. Jonathan, and A. Morris, Mol. Phys., 38, 729 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    Ibidem, Mol. Phys., 44, 265 (1981).CrossRefGoogle Scholar
  23. 23.
    P. J. Bruna, G. Hirsch, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys., 42, 875 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules, van Nostrand Reinhold Co., New York (1979).Google Scholar
  25. 25.
    P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, J. Chem. Phys., 72, 5437 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    C. Petrongolo, P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, J. Chem. Phys., 74, 4594 (1981); 74, 4611 (1981).Google Scholar
  27. 27.
    J. Drowart, R. P. Burns, G. De Maria, and M. G. Inghram, J. Chem. Phys., 31, 1131 (1959).ADSCrossRefGoogle Scholar
  28. 28.
    V. H. Dibeler and S. K. Liston, J. Chem. Phys., 47, 4548 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    a) J. Drowart, G. De Maria and M. G. Inghram, J. Chem. Phys., 29, 1015 (1958). b) G. Verhaegen, F. E. Stafford, and J. Drowart, J. Chem. Phys., 40, 1622 (1964).Google Scholar
  30. 30.
    B. L. Lutz, Astrophys. J., 163, 131 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    J. Berkowitz, J. Chem. Phys., 36, 2533 (1962).ADSCrossRefGoogle Scholar
  32. 32.
    a) R. Preu, R. J. Buenker, and S. D. Peyerimhoff, J. Mol. Struct., 9, 171 (1978). b) H. W. Kroto, J. N. Murrell, A. Al-Derzi, and M. F. Guest, Astrophys. J., 219, 886 (1978). c) J. N. Murrell, H. W. Kroto, and M. F. Guest, J. Chem. Soc. Chem. Comm., 619 (1977). d) R. PreuP, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys. Lett., 62, 21 (1979). e) P. J. Bruna, G. Hirsch, S. D. Peyerimhoff, and R. J. Buenker, Can. J. Chem., 57, 1839 (1979).Google Scholar
  33. 33.
    P. J. Bruna, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys., 27, 33 (1978).CrossRefGoogle Scholar
  34. 34.
    R. J. Buenker, P. J. Bruna, and S. D. Peyerimhoff, Israel J. Chem., 19, 309 (1980).Google Scholar
  35. 35.
    P. J. Bruna, Gazz. Chim. Ital., 108, 395 (1978).Google Scholar
  36. 36.
    P. J. Bruna and C. M. Marian, Chem. Phys. Lett., £7, 109 (1979) P. J. Bruna, Chem. Phys., 49, 39 (1980).Google Scholar
  37. 37.
    P. J. Bruna and C. M. Marian, Chem. Phys., 37, 425 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    J. M. Dyke, N. B. H. Jonathan, A. Morris, and M. J. Winter, Mol. Phys., 39, 629 (1980).ADSCrossRefGoogle Scholar
  39. 39.
    D. C. Frost, S. T. Lee, and C. A. McDowell, Chem. Phys. Lett., 23, 472 (1973).ADSCrossRefGoogle Scholar
  40. 40.
    J. N. Murr ell and A. Al-Derzi, J. Chem. Soc. Faraday II, 76., 319 (1980).Google Scholar
  41. 41.
    S. K. Shih, S. D. Peyerimhoff, and R. J. Buenker, J. Mol. Spectrosc., 64, 167 (1977).ADSCrossRefGoogle Scholar
  42. 42.
    E. F. van Dishoeck, W. J. van der Hart, and M. van Hemert, Chem. Phys., 50, 45 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    a) A. Richartz, Progress in Theor. Org. Chem., 2 (1977). b) A. Richartz, R. J. Buenker, P. J. Bruna, and S. D. Peyerim-hoff, Mol. Phys., 33, 1345 (1977).Google Scholar
  44. 44.
    A. Richartz, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys., 28, 305 (1978).CrossRefGoogle Scholar
  45. 45.
    K. H. Thunemann, R. J. Buenker, S. D. Peyerimhoff, and S. K. Shih, Chem. Phys., 35, 35 (1978).CrossRefGoogle Scholar
  46. 46.
    P. J. Bruna, to be publishedGoogle Scholar
  47. 47.
    L. S. Cederbaum, J, Schirmer, W, Domcke, and W. von Niessen, J. Electron Spectrosc., 16, 59 (1978).Google Scholar
  48. 48.
    W. Butscher, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys. Lett., 52, 449 (1978).CrossRefGoogle Scholar
  49. 49.
    A. Barth, R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Chem. Phys., 46, 149 (1980).CrossRefGoogle Scholar
  50. 50.
    M. Zeitz, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys. Lett., 58, 487 (1978).ADSCrossRefGoogle Scholar
  51. 51.
    S. D. Peyerimhoff and R. J. Buenker, Chem. Phys. Lett., 5, 434 (1979).ADSCrossRefGoogle Scholar
  52. 52.
    S. K. Shih, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys., 28, 299 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Pablo J. Bruna
    • 1
    • 2
  • Gerhard Hirsch
    • 1
    • 2
  • Robert J. Buenker
    • 1
    • 2
  • Sigrid D. Peyerimhoff
    • 1
    • 2
  1. 1.BonnWest Germany
  2. 2.WuppertalWest Germany

Personalised recommendations