Skip to main content

Geodesic Optics: Overview and Perspectives

  • Chapter
Integrated Optics

Part of the book series: NATO Advanced Studies Institutes Series ((ASIB,volume 91))

  • 337 Accesses

Abstract

Geodesic optics can be defined as the particular field of guided optics where the light propagation occurs on a non planar waveguide of uniform thickness. According to the Fermat principle, the rays follow the geodesies of the curved guiding surface. This property can be utilized to form high quality passive components in integrated optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.S. Kunz, Propagation of microwaves between a parallel pair of doubly curved conducting surfaces, J.Appl.Phys. 25: 642 (1954).

    Article  ADS  MATH  Google Scholar 

  2. G. Toraldo di Francia, Un problema sulle geodetiche del le superfici di rotazione che si presenta nella tecnica delle microonde, Atti.Fondaz.Ronchi. 12: 151 (1957).

    Google Scholar 

  3. G.C. Righini, V. Russo, S. Sottini and G. Toraldo di Francia, Thin film geodesic lens, Appl.Opt. 11: 1442 (1972).

    Article  ADS  Google Scholar 

  4. G.C. Righini, V. Russo, S. Sottini and G. Toraldo di Francia, Geodesic lenses for guided optical-waves, Appl.Opt. 12: 1477 (1973).

    Article  ADS  Google Scholar 

  5. W.L. Chang and E. Voges, Geodesic components for guided wave optics, Arch.E1ek.Ubertragung. Vol. 34: 385 - 393 (1980).

    Google Scholar 

  6. M. Johnson, Elastic rubber-waveguide geodesic optical deflector, Appl.Phys.Lett. 37: 123 (1980).

    Article  ADS  Google Scholar 

  7. D.B. Anderson, Optical waveguide lenses, Rokwell International Corporation, Anaheim, California AFAL-TR - 76 - 54.

    Google Scholar 

  8. E. Spiller and J.S. Harper, High resolution lenses for optical waveguides, Appl.Opt. 13: 2105 (1974).

    Article  ADS  Google Scholar 

  9. G.E. Betts and G.E. Merx, Spherical aberration correction and fabrication tolerances in geodesic lenses, App1.Opt. 17: 3969 (1978).

    Article  Google Scholar 

  10. D.W. Vahey and V.E. Wood, Focal characteristics of spheroidal geodesic lenses for integrated optical processing, IEEE J. Quantum Electron. QE-13: 129 (1977).

    Google Scholar 

  11. W.H. Southwell, Geodesic optical waveguide lens analysis, J.Opt. Soc.Am. 67: 1293 (1977).

    Article  ADS  Google Scholar 

  12. G.E. Betts, J.C. Bradley, G.E. Marx, D.C. Schubert and H.A. Trenchard, Axially symmetric geodesic lenses, Appl.Opt. 17: 2346 (1978).

    Article  ADS  Google Scholar 

  13. V.E. Wood, Effects of edge-rounding on geodesic lenses, Appl. Opt. 15: 2817 (1976).

    Article  ADS  Google Scholar 

  14. D. Kassai and E. Marom, Aberration-corrected rounded-edge geodesic lenses, J.Opt.Soc.Am. 69: 1242 (1979).

    Article  ADS  Google Scholar 

  15. B. Chen and O.G. Ramer, Diffraction limited geodesic lens for integrated optic circuit, IEEE J. of Quantum Electronics. QE- 15, 9: 853 (1979).

    Article  ADS  Google Scholar 

  16. S. Sottini, V. Russo and G.C. Righini, General solution of the problem of perfect geodesic lenses for integrated optics, J.Opt. Soc.Am. 69: 1248 (1979).

    Article  ADS  Google Scholar 

  17. J. Van der Done and P.E. Lagasse, Analysis of geodesic lenses by beam propagation method, Electronics Letters. 16: 292 (1980).

    Article  Google Scholar 

  18. B. Chen, E. Marom and R.J. Morrison, Diffraction-limited geodesic lens for integrated optics circuits, Appl.Phys.Lett. 33: 511 (1978).

    Article  ADS  Google Scholar 

  19. G.C. Righini, V. Rus,so and S. Sottini, A family of perfect aspherical geodesic lenses for integrated optical circuits, IEEE J.Quantum Electron. QE-15, 1, (1979).

    Google Scholar 

  20. D. Mergerian, E.C. Malarkey, R.P. Pautienus and J.C. Bradley, Diamond-machined geodesic lenses in LiNb03, Proc.SPIE. 176: 85 (1979).

    Article  Google Scholar 

  21. G.F. Doughty, R.B. Wilson, J. Singh, R.M. De la Rue and S.Wright, Aspheric geodesic lenses in an integrated optics spectrum analyser, Proc.SPIE. 235 (1981). (in press).

    Google Scholar 

  22. J.C. Bradley, E.C. Malarkey, D. Mergerian and N.A. Trenchard, Theory of geodesic lenses Guided wave optical by systems and devices, SPIE. 176: 75 (1979).

    Article  Google Scholar 

  23. S. Sottini, V. Russo and G.C. Righini, Fabrication tolerances in geodesic lenses: a rule of the thumb, IEEE Trans.Circuits & Systems. CAS-26, 1036, (1979).

    Google Scholar 

  24. A. Naumaan and J.T. Boyd, A Geodesic optical waveguide lens fabricated by anisotropic etching, Appl.Physics Lett. 35 (3): 234 (1979).

    Article  ADS  Google Scholar 

  25. D.W. Vahey, R.P. Kenan and W.K. Burns, Effects of anistropic and curvature losses on the operation of geodesic lenses in Ti: LiNb03 waveguides, Appl.Opt. 19: 271 (1980).

    Article  ADS  Google Scholar 

  26. S. Sottini, V. Russo and G.C. Righini, Geodesic optics: new components, J.Opt.Soc.Am. 70: 1230 (1980).

    Article  ADS  Google Scholar 

  27. S. Cornbleet and P.J. Rinous, Generalized formulas for equivalent geodesic and nonuniform refractive lens, IEEE Proc. 128: 95 (1981).

    Google Scholar 

  28. G.C. Righini, V. Russo and S. Sottini, Signal processing in integrated optics employing geodesic lenses, Proc.SPIE. 164: 20 (1979).

    Article  Google Scholar 

  29. C.S. Tsai, Guided-wave acoustooptic Bragg modulators for wideband integrated optic communications and signal processing, IEEE Trans.Circuits & Systems. CAS-26: 1072 (1979).

    Article  Google Scholar 

  30. G.C. Righini, V. Russo and S. Sottini, Optical thin film processor for unidimensional signals, U.S. Patent, n.4, 222, 628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Russo, V. (1983). Geodesic Optics: Overview and Perspectives. In: Martellucci, S., Chester, A.N. (eds) Integrated Optics. NATO Advanced Studies Institutes Series, vol 91. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3661-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3661-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3663-1

  • Online ISBN: 978-1-4613-3661-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics