Integrated Optics Devices for Optical Communications

  • H. Kogelnik
Part of the NATO Advanced Studies Institutes Series book series (volume 91)


The field of integrated optics covers the exploration of guided- wave techniques for the construction of new or improved optical device Dielectric waveguides, usually in the form of a planar film or strip of higher refractive index than the substrate, are used to confine the light to very small cross sections over relatively long lengths. The goal is to accomplish compact and miniaturized devices of improved efficiency and reliability, better mechanical and thermal stability, and lower drive voltage and power consumption. In addition, one hopes that several guided-wave devices can be combined and connected on a common substrate to form more complicated optical circuits in analogy with electronic integrated circuits. The branch of integrated optics which is trying to serve optical fiber telecommunications has been in the research laboratory for more than a decade. It has witnessed the acceptance of a first generation of lightwave technology near 0.8 micrometer wavelengths, and the emergence of a second generation technology near 1.3 micrometers. Both of these technologies use multi-mode fibers, yet integrated optics is essentially a single-mode technology, even though there have been several efforts to make contributions to multimode systems. Thus, integrated optics had to wait in the research laboratory.


Integrate Optic Lightwave Technology Integrate Optic Device Wavelength Division Multi Lower Drive Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. V. Schmidt and P. S. Cross, Optics Lett.. 2: 45, 1978.ADSCrossRefGoogle Scholar
  2. 2.
    R. C. Alferness, N. P. Economou and L. L. Buhl, Appl. Phys. Lett.. 38: 214, 1981.ADSCrossRefGoogle Scholar
  3. 3.
    R. V. Schmidt and L. L. Buhl, Electronics Lett.. 12: 575, 1976.ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Alferness and R. V. Schmidt, Appl. Phys. Lett.. 33: 161, 1978.ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Alferness and L. L. Buhl, Opt. Lett.. 5: 473, 1980.ADSCrossRefGoogle Scholar
  6. 6.
    M. Johnson, Appl. Opt.. 18: 1288, 1979.ADSCrossRefGoogle Scholar
  7. 7.
    R. Ulrich and M. Johnson, Appl. Opt.. 18: 1857, 1979.ADSCrossRefGoogle Scholar
  8. 8.
    M. Kubota, T. Oohara, K. Furuya and Y. Suematsu, Electronics Lett.. 16: 573, 1980.CrossRefGoogle Scholar
  9. 9.
    R. C. Alferness, IEEE J. Quant. Electron. QE-17:965, 1981; R. C. Alferness and L. L. Buhl, Appl. Phys. Lett. 38: 655, 1981.Google Scholar
  10. 10.
    R. A. Steinberg, T. G. Giallorenzi and R. C. Priest, Appl. Optics. 16: 2166, 1979.ADSCrossRefGoogle Scholar
  11. 11.
    R. C. Alferness, Appl. Phys. Lett.. 35: 748, 1979.ADSCrossRefGoogle Scholar
  12. 12.
    R. C. Alferness and L. L. Buhl, Appl. Phys. Lett.., to be published.Google Scholar
  13. 13.
    K. Iga and B. I. Miller, Electronics Lett.. 16: 342, 1980.ADSCrossRefGoogle Scholar
  14. 14.
    L. A. Coldren, B. I. Miller, K. Iga and J. A. Rentschler, Appl. Phys. Lett.. 38: 315, 1981.ADSCrossRefGoogle Scholar
  15. 15.
    H. Matsueda, T. Fukuzawa, T. Kuroda and M. M. Nakamura, Proc. 12th Conf. Solid State Dev.., Tokyo, 1980.Google Scholar
  16. 16.
    S. Margalit, N. Bar-Chaim, J. Katz, I. Ury, D. P. Wilt, M. Yust and A.Yariv, Laser Focus., p. 76, Sept. 1980.Google Scholar
  17. 17.
    J. L. Mertz, R. A. Logan and A. M. Sergent, IEEE J. Quant. Electron.. QE-15: 72, 1979.ADSCrossRefGoogle Scholar
  18. 18.
    D. Z. Tsang and J. N. Walpole, Digest. 100C., San Francisco, p. 34, 1981.Google Scholar
  19. 19.
    H. Melchior, Phys. Today.. 30: 32, 1977.CrossRefGoogle Scholar
  20. 20.
    H. Melchior, A. R. Hartman, D. P. Schinke and T. E. Seidel, Bell Syst. Tech. J.. 57: 1791, 1978.Google Scholar
  21. 21.
    T. Li, IEEE Trans. Commun.. 26: 946, 1978.CrossRefGoogle Scholar
  22. 22.
    S. Hata, K. Kajiyama and Y. Mizushima, Electron. Lett.. 13: 668, 1977.CrossRefGoogle Scholar
  23. 23.
    D. R. Smith, R. C. Hopper and I. Garrett, Opt. Quantum Electron. 10: 292, 1978.Google Scholar
  24. 24.
    M. A. Washington, R. E. Nahory, M. A. Pollack and E. D. Beebe, Appl. Phys. Lett.. 33: 854, 1978.ADSCrossRefGoogle Scholar
  25. 25.
    C. A. Burrus, A. G. Dentai and T. P. Lee, Electron. Lett.. 15: 655Google Scholar
  26. 26.
    R. F. Leheny, R. E. Nahory and M. A. Pollack, Electron Lett. 15: 713, 1979.CrossRefGoogle Scholar
  27. 27.
    R. F. Leheny, A. A. Ballman, J. C. DeWinter, R. E. Nahory and M. A. Pollack, J. Elee. Matls.. 9: 561, 1980.ADSCrossRefGoogle Scholar
  28. 28.
    R. F. Leheny, R. E. Nahory, M. A. Pollack, A. A. Ballman, E. D. Beebe, J. C. DeWinter and R. J. Martin, Electron. Lett.. 16: 353 1980ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Kogelnik
    • 1
  1. 1.Bell LaboratoriesHolmdelUSA

Personalised recommendations