Advertisement

Irregularities and Instabilities in the Auroral F Region

  • James F. Vickrey
  • Michael C. Kelley
Part of the Nobel Foundation Symposia Published by Plenum book series (NOFS, volume 54)

Abstract

The Earth’s F-region ionospheric plasma displays structure perpendicular to the magnetic field on scales from hundreds of kilometers down to centimeters. The physical processes that operate over such a wide range of scale sizes are, of course, very diverse. At the largest scales (λ ≥ 10 km), production, loss, and transport of structured plasma are dominated by aeronomic processes including energy sources of magnetospheric origin. At intermediate (0.1 km < < < 10 km) and small (λ < 100 m) scales, plasma instabilities and cross-field plasma diffusion are often the dominant physical processes controlling the plasma structure. However, because nonlinear plasma processes can couple structures in one scale length regime to other spatial frequencies, the entire spectrum of irregularities must be studied as a whole.

Keywords

Flux Tube Auroral Zone Neutral Wind Auroral Oval Plasma Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaturvedi, P. K., and Ossakow, S. L., February 1979, Nonlinear stabilization of the E X B gradient drift instability in ionospheric plasma clouds, J. Geophys. Res., 84: A2: 419.Google Scholar
  2. Chaturvedi, P. K., and Ossakow, S. L., December 1979, Nonlinear stabilization of the current convective instability in the diffuse aurora, J. Geophys. Res. Letts., 6: 12: 957.ADSCrossRefGoogle Scholar
  3. Dyson, P. L., and Winningham, J. D., 1974, Topside ionospheric spread F and particle precipitation in the dayside magnetospheric clefts, J. Geophys. Res., 79: 5219.ADSCrossRefGoogle Scholar
  4. Fejer, B. G., and Kelley, M. C., May 1980, Ionospheric irregularities, Rev. Geophys. and Space Sci., 18: 2: 401.ADSCrossRefGoogle Scholar
  5. Foster, J. C. and Burrows, J. R., December 1976, Electron fluxes over the polar cap: 1. Intense KeV fluxes during post- storm quieting, J. Geophys. Res., 81: 34: 6016.ADSCrossRefGoogle Scholar
  6. Gary, S. P., June 1980, Wave particle transport from electrostatic instabilities, Phys. Fluids, 23: 6: 1193.MATHADSCrossRefGoogle Scholar
  7. Heelis, R. A., Murphy, J. A., and Hanson, W. B., January 1981, A feature of the behavior of He+in the nightside high-latitude ionosphere during equinox, J. Geophys. Res., 86: A1: 59.Google Scholar
  8. Heppner, J. P., March 1977, Empirical models of high-latitude electric fields, J. Geophys. Res., 82: 7: 1115.ADSCrossRefGoogle Scholar
  9. Kelley, M. C., and Carlson, C. W., 1977, Observation of intense velocity shear and associated electrostatic waves near an auroral arc, J. Geophys. Res., 82: 2343.ADSCrossRefGoogle Scholar
  10. Kelley, M. C., and Mozer, F. S., August 1972, A satellite survey of vector electric fields in the ionosphere at frequencies of 10–500 Hz: 1. Isotropic, high-latitude electrostatic emissions, J. Geophys. Res., 77: 22: 4158.ADSCrossRefGoogle Scholar
  11. Kelley, M. C., Bering, C. E., and Mozer, F. S., 1975, Evidence that the ion cyclotron instability is saturated by ion heating, Phys. Fluids, 18: 1590.ADSCrossRefGoogle Scholar
  12. Kelley, M. C., Vickrey, J. F., Carlson, C. W., and Torbert, R., 1982, On the origin and spatial extent of high-latitude F-region irregularities., J. Geophys. Res., in press.Google Scholar
  13. Kelley, M. C., Pfaff, C. R., Baker, K. D., Ulwick, J. C., Livingston, R. C., Rino, C. L., and Tsunoda, R. T., 1982, Simultaneous rocket probe and radar measurements of equatorial spread F-transitional and short wavelength results, submitted to J. Geophys. Res.Google Scholar
  14. Kelly, J. D., and Wickwar, V. B., September 1981, Radar measurements of high-latitude ion composition between 140 and 300-km altitude, J. Geophys. Res., 86: A9: 7617.Google Scholar
  15. Keskinen, M. J., and Ossakow, S. L., January 1982, Nonlinear evolution of plasma enhancements in the auroral ionosphere: 1. Long wavelength irregularities, J. Geophys. Res., 87: 144.ADSCrossRefGoogle Scholar
  16. Kintner, P. M., 1976, Observations of velocity shear driven plasma turbulence, J. Geophys. Res., 81: 5114.ADSCrossRefGoogle Scholar
  17. Linson, L. M. and Workman, J. B., June 1970, Formation of striations in ionospheric plasma clouds, J. Geophys. Res., 75: 16: 3211.ADSCrossRefGoogle Scholar
  18. Mozer, F. S, Cattell, C. A., Tererin, M., Torbert, R. B., Vonglinski, S., Woldorf, M., and Wygant, J., 1979, The dc and ac electric field, plasma density, plasma temperature, and field-aligned current experiments on the S3-3 satellite, J. Geophys. Res., 84: A10: 5875.Google Scholar
  19. Ossakow, S. L., and Chaturvedi, P. K., April 1979, Current convective instability in the diffuse aurora, Geophys. Res. Letts., 6: 4: 322.ADSCrossRefGoogle Scholar
  20. Rino, C. L., Livingston, R. C., and Matthews, S. J., December 1978, Evidence for sheet-like auroral ionospheric irregularities, Geophys. Res. Letts., 5: 12: 1034.ADSCrossRefGoogle Scholar
  21. Sagalyn, R. S., Smiddy, M., and Ahmed, M., October 1974, High-latitude irregularities in the topside ionosphere based on ISIS 1 thermal probe, J. Geophys. Res., 79: 28: 4253.CrossRefGoogle Scholar
  22. Spiro, R. W., Heelis, R. A., and Hanson, W. B., September 1978, Ion convection and the formation of the mid-latitude F-region ionozation trough, J. Geophys. Res., 83: A9: 4255.Google Scholar
  23. Vickrey, J. F., and Kelley, M. C., 1982, The effects of a conducting E layer on classical F-region cross-field plasma diffusion, submitted to J. Geophys. Res.Google Scholar
  24. Vickrey, J. F., Rino, C. L., and Poterma, T. A., October 1980, Chatanika/Triad observations of unstable ionization enhancements in the auroral F region, Geophys. Res. Letts., 7: 10: 789.ADSCrossRefGoogle Scholar
  25. Wallis, D. D., and Budzinski, E. E., January 1981, Empirical models of height-integrated conductivities, J. Geophys. Res., 86: A1: 125.Google Scholar
  26. Weber, E. J., and Buchau, J., January 1980, Polar cap F-layer auroras, Geophys. Res. Letts., 8: 1: 125.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • James F. Vickrey
    • 1
  • Michael C. Kelley
    • 2
  1. 1.Radio Physics LaboratorySRI InternationalMenlo ParkUSA
  2. 2.School of Electrical EngineeringCornell UniversityIthacaUSA

Personalised recommendations