High-Latitude Space Plasma Physics pp 493-513 | Cite as

# Causes of Particle Precipitation along Auroral Field Lines

## Abstract

Quantitative theoretical results have been obtained for three basic causes of auroral particle precipitation. Pitch angle diffusion of trapped plasma sheet particles driven by resonant wave-particle interactions leads to isotropic pitch angle distributions at lower energies, with a transition to increasingly anisotropic distributions at higher energies. Diffuse auroral electron precipitation (including that associated with pulsating aurora) can be explained by such interactions. Energization of ions in the current sheet via single particle motion leads to isotropic auroral precipitation at all energies from ∿1 keV to nearly 1 MeV. Much of observed auroral ion precipitation is consistent with that expected from this current sheet energization. The electrons responsible for discrete auroral are accelerated by a field aligned potential difference V_{11} _{∿} ^{>} 1 keV. The overall electrodynamics of this energization, and the associated currents and electric potential variations along auroral field lines an4 within the ionosphere, can be explained by single-particle motion along the field lines and current continuity in the ionosphere. The structure of the potential distribution at high-altitudes responsible for the discrete aurora has been identified but not explained.

## Keywords

Current Sheet Pitch Angle Plasma Sheet Pitch Angle Diffusion Convection Electric Field## Preview

Unable to display preview. Download preview PDF.

## References

- Anderson, H. R., 1978, Birkeland currents and auroral structure, J. Geomag. Geoelec., 30: 381.CrossRefADSGoogle Scholar
- Ashour-Abdalla, M., and R. M. Thorne, 1977, The importance of electrostatic ion-cyclotron instability for quiet time proton auroral precipitation, Geophys. Res. Lett.4: 45.CrossRefADSGoogle Scholar
- Ashour-Abdalla, M., and R. M. Thorne, 1978, Toward a unified view of diffuse auroral precipitation, J. Geophys. Res.83: 4755.CrossRefADSGoogle Scholar
- Bahnsen, A., 1978, Recent techniques of observations and results from the magnetopause regions, J. Atm. Terr. Phys.40: 235.CrossRefADSGoogle Scholar
- Bernstein, W., B. Hultqvist, and H. Borg, 1974, Some implications of low altitude observations of isotropic precipitation of ring current protons beyond the plasmapause, Planet. Space Sci.22: 767.CrossRefADSGoogle Scholar
- Cowley, S. W. H., 1980, Plasma populations in a simple open model magnetosphere, Space Sci. Rev.26; 217.CrossRefADSGoogle Scholar
- Cowley, S. W. H., and D. J. Southwood, 1980, Some properties of a steady-state geomagnetic tail, Geophys. Res. Lett.7: 833.CrossRefADSGoogle Scholar
- DeCoster, R. J., and L. A. Frank, 1979, Observations pertaining to the dynamics of the plasma sheet, J. Geophys. Res.84: 5099.CrossRefADSGoogle Scholar
- Evans, D. S., 1974, Precipitating electron fluxes formed by a magnetic field aligned potential difference, J. Geophys. Res.79: 2853.CrossRefADSGoogle Scholar
- Evans, D. S., 1976, The acceleration of charged particles at low altitudes, in Physics of Solar Planetary Environments, ed. D. J. Williams, Amer. Geophys. Union, 730.Google Scholar
- Evans, D. S., N. C. Maynard, J. Troim, T. Jacobsen, and A. Egeland, 1977, Auroral vector electric field and particle comparisons, 2. Electrodynamics of an arc, J. Geophys. Res.82: 2235.CrossRefADSGoogle Scholar
- Frank, L. A., and D. A. Gurnett, 1971, Distributions of plasmas and electric fields over the auroral zones and polar caps, J. Geophys. Res.76: 6829.CrossRefADSGoogle Scholar
- Fridman, M., and J. Lemaire, 1980, Relationship between auroral electron fluxes and field-aligned electric potential difference, J. Geophys. Res.85: 664.CrossRefADSGoogle Scholar
- Gorney, D. J., A. Clarke, D. Croley, J. Fennell, J. Luhmann, and P. Mizera, 1981, The distribution of ion beams and conics below 8000 km, J. Geophys. Res.86: 83.CrossRefADSGoogle Scholar
- Gurnett, D. A., and L. A. Frank, 1973, Observed relationships between electric fields and auroral particle precipitation, J. Geophys. Res.78: 145.CrossRefADSGoogle Scholar
- Harel, M., R. A. Wolf, P. H. Reiff, and H. K. Hillis, 1977, Study of plasma flow near the earth’s plasmaspause, U.S. Air Force Geophysics Lab., Report AFGL-TR-77-0286.Google Scholar
- Harel, M., R. A. Wolf, P. H. Reiff, and R. W. Spiro, 1980, Quantitative simulation of a magnetospheric substorm, 1. Model logic and overview, submitted to J. Geophys. Res.Google Scholar
- Heikkila, W. J., R. J. Pellinen, C.-G. Falthammar, and L. P. Block, 1979, Potential, and inductive electric fields in the magnetosphere during auroras, Planet. Space Sci. 27: 1383.CrossRefADSGoogle Scholar
- Hultqvist, B., H. Borg, P. Christophersen, W. Riedler, and W. Bernstein, 1974, Energetic protons in the keV energy range and associated keV electrons observed at various local times and disturbance levels in the upper ionosphere, NOAA Technical Report ERL 305-SEL 29, U.S. Dept. of Commerce, Boulder, CO.Google Scholar
- Kamide, Y., and G. Rostoker, 1977, The spatial relationships of field-aligned currents and auroral electrojets to the distribution of nightside auroras, J. Geophys. Res.82: 5589.CrossRefADSGoogle Scholar
- Kennel, C. F., F. L. Scarf, R. W. Fredriks, J. H. McGehee and F. V. Coroniti, 1970, VLF electric field observations in the magnetosphere, J. Geophys. Res. 75: 6136.CrossRefADSGoogle Scholar
- Knight, L., 1973, Parallel electric fields, Planet. Space Sci.21: 741.CrossRefADSGoogle Scholar
- Lemaire, J., and M. Scherer, 1974, Ionosphere-plasmasheet field-aligned currents and parallel electric fields, Planet. Space Sci.22: 1485.CrossRefADSGoogle Scholar
- Lennartsson, W., 1980, On the consequences of the interaction between the auroral plasma and the geomagnetic field, Planet. Space Sci.28: 135.CrossRefADSGoogle Scholar
- Lundin, R., and I. Sandahl, 1978, Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights, Symposium on European Rocket Research, Ajaccio, Corsica, 1978, ESA SP-135, 125.Google Scholar
- Lundblad, J. A., F. Sorass, and K. Aarsnes, 1974, Substorm morphology of <100 keV protons, Planet. Space Sci.27: 841.CrossRefADSGoogle Scholar
- Lyons, L. R., 1974, Electron diffusion driven by magnetospheric electrostatic waves, J. Geophys. Res.79: 575.CrossRefADSGoogle Scholar
- Lyons, L. R., 1980, Generation of large-scale regions of auroral currents, electric, potentials, and precipitation by the divergence of the convection electric field, J. Geophys. Res.85: 17.CrossRefADSGoogle Scholar
- Lyons, L. R., 1981, Discrete aurora as the direct result of an inferred, high-altitude generating potential distribution, J. Geophys. Res.86: 1.CrossRefADSGoogle Scholar
- Lyons, L. R., D. S. Evans, and R. Lundin, 1979, An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms, J. Geophys. Res.84: 457.CrossRefADSGoogle Scholar
- Lyons, L. R., and T. G. Speiser, 1982, Evidence for current sheet acceleration in the geomagnetic tail, J. Geophys. Res, (in press).Google Scholar
- Maynard, N. C., D. S. Evans, B. Maehlum, and A. Egeland, 1977, Auroral vector electric field and particle comparisons, 1. Pre-midnight convection topology, J. Geophys. Res.82: 227.Google Scholar
- Schield, M. A., and L. A. Frank, 1970, Electron observations between the inner edge of plasma sheet and the plasmapause, J. Geophys. Res.75: 5401.CrossRefADSGoogle Scholar
- Sharber, J. R., 1981, The continuous (diffuse) aurora and auroral-E ionization, Physics of Space Plasmas, ed. by T. S. Chang, B. Coppi, and J. R. Jasperse, Scientific Publishers, Cambridge, Mass., (in press).Google Scholar
- Speiser, T. W., 1965, Particle trajectories in model current sheets, 1, Analytical solutions, J. Geophys. Res.70: 4219.CrossRefADSGoogle Scholar
- Speiser, T. W., 1967, Particle trajectories in model current sheets, 2, Applications to auroras using a geomagnetic tail model, J. Geophys. Res.72: 3919.CrossRefADSGoogle Scholar
- Stern, D. P., 1980, Energetics of the magnetosphere, presented at 1980 AGU Fall Meeting, NASA Technical Memorandum 82039, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
- Vasyliunas, V. M., 1968, A survey of low energy electrons in the evening sector of the magnetosphere with 0G0-1 and 0G0-3, J. Geophys. Res.73: 2839.CrossRefADSGoogle Scholar
- Whalen, B. A., and I. B. McDiarmid, 1973, Pitch angle diffusion of low-energy auroral electrons, J. Geophys. Res.78: 1608.CrossRefADSGoogle Scholar
- Williams, D. J., 1981, Energetic ion beams at the edge of the plasma sheet: ISEE 1 observations plus a simple explanatory model, J. Geophys. Res.86: 5507.CrossRefADSGoogle Scholar
- Young, T. S. T., J. D. Callen, and J. E. McCune, 1973, High-frequency electrostatic waves in the magnetosphere, J. Geophys. Res.78: 1082.CrossRefADSGoogle Scholar