Skip to main content

Effects of Heavy Ions on Microscopic Plasma Physics in the Magnetosphere

  • Chapter
Book cover High-Latitude Space Plasma Physics

Part of the book series: Nobel Foundation Symposia Published by Plenum ((NOFS,volume 54))

Abstract

Since they can be used as tracers of solar wind — magnetosphere-ionosphere exchanges, more emphasis has been put recently on heavy ions and on the role which they can play in magnetospheric processes. Among those, processes involving wave-particle interactions (WPI) between hot anisotropic protons and ion-cyclotron waves (ICW) have been the most documented, thanks to the European geostationary satellites GEOS. The modifications induced by the presence of cold He+ ions of ionospheric origin in the propagation and generation properties of ICW’s are discussed. It is also shown that these He+ ions can be trapped and heated through quasi-linear diffusion and that nonlinear trapping of cold electrons, which would not be possible in the absence of He+ ions, may lead to the generation of a new class of wave phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman C., and Fijalkov E., 1969, The transmission of electroma-gnetic waves through the ionosphere at micropulsation frequencies, Alta Freq., 38: 183.

    Google Scholar 

  • Ashour-Abdalla M., Okuda H., and Cheng C.Z., 1981, Acceleration of heavy ions on auroral field lines, Geophys. Res. Lett., 8: 795.

    Article  ADS  Google Scholar 

  • Balsiger H., Eberhardt P., Geiss J., and Young D.T., 1980, Magnetic storm injection of 0.9-to 16-keV/e solar and terrestrial ions into the high-altitude magnetosphere, J. Geophys. Res., 85: 1645

    Article  ADS  Google Scholar 

  • Burman R., 1968, On the propagation of micropulsation whistlers through a possible region of evanescence in the magnetosphere, Planet.Space Sci., 16: 137.

    Google Scholar 

  • Brice N., and Lucas C., 1975, Interaction between heavier ions and ring current protons, J. Geophys. Res., 80: 936.

    Article  ADS  Google Scholar 

  • Chappell, C.R., Baugher C.R., and Horwitz J.L., 1980, New advances in thermal plasma research, Rev. Geophys.Space Phys., 18: 853.

    Article  ADS  Google Scholar 

  • Cornilleau-Wehrlin, N., 1981, A new ULF-modulated electrostatic wave detected in the extremely low frequency range onboard GEOS, J. Geophys. Res., 86: 1365.

    Article  ADS  Google Scholar 

  • Cornilleau-Wehrlin N., and Gendrin R., 1979, VLF transmitter-induced quiet bands: a quantitative interpretation, J. Geophys. Res., 84: 882.

    Google Scholar 

  • Cornwall J.M., and Schulz M., 1979, Physics of heavy ions in the magnetosphere, in: “Solar System Plasma Physics, vol. 3”, L. J. Lanzerotti, C.F. Kennel and E.N. Parker,eds., North-Holland, Amsterdam, pp. 165 - 210.

    Google Scholar 

  • Cuperman S., Gomberoff L., and Sternlieb A., 1975, Requirements on singly ionized lithium concentration for magnetospheric seeding experiment, J. Geophys. Res., 80: 4643.

    Google Scholar 

  • Décréau P.M.E., Béghin C., and Parrot H., 1978, Electron density and temperature, as measured by the mutual impedance experiment onboard GEOS-1, Space Sci. Rev., 22: 581.

    Google Scholar 

  • Dowden R., 1966, Micropulsations “nose whistlers”: a Helium explanation, Planet. Space Sci., 14: 1273.

    Google Scholar 

  • Etcheto J., and Petit M., 1977, Une nouvelle méthode de caractérisation du plasma magnétosphérique, C.R. Acad. Sci., 285; 329.

    ADS  Google Scholar 

  • Etcheto J., and Bloch J.J., 1978, Plasma density measurements from the GEOS-1 relaxation sounder, Space Sci. Rev., 22: 597.

    Google Scholar 

  • Fennel J.F., Croley D.R., Jr., and Kaye S.M., 1981, Low-energy ion pitch angle distributions in the outer magnetosphere: ion zipper distributions, J. Geophys. Res., 86: 3375.

    Google Scholar 

  • Fraser B.J., 1972, Propagation of Pel micropulsations in a protonhelium magnetosphere, Planet. Space Sci., 20: 1883.

    Article  ADS  Google Scholar 

  • Geiss J., Balsiger H., Walker H.-P., Weber L., Young D.T., and Rosenbauer H., 1978, Dynamics of magnetospheric ion composition as observed by the GEOS mass spectrometer, Space Sci. Rev., 22: 537.

    Google Scholar 

  • Gendrin R., 1968, Pitch-angle diffusion of low energy protons due to gyroresonant interaction with hydromagnetic waves, J. Atmos. Terr. Phys., 30: 1313.

    Article  ADS  Google Scholar 

  • Gendrin R., 1972, Gyroresonant wave-particle interactions, in: “Solar-Terrestrial Physics, 1970” E.R. Dyer, ed., D. Reidel, Dordrecht, vol. 3, pp. 236–269.

    Google Scholar 

  • Gendrin R., 1975a, Is the plasmapause a preferential region for proton precipitation ?., Ann. Geophys., 31: 127.

    Google Scholar 

  • Gendrin, R., 1975b, Waves and wave-particle interactions in the magnetosphere: a review, Space Sci. Rev., 18: 145.

    Article  ADS  Google Scholar 

  • Gendrin R., 1980, Some aspects of ULF waves observed onboard GEOS related to convection, heating and precipitation processes, in: “Exploration of the Polar Upper Atmosphere”, C.S. Deehr and J.A. Holtet, eds., D. Reidel, Dordrecht, pp. 337–354.

    Google Scholar 

  • Gendrin R., 1981, General relationships between wave amplification and particle diffusion in a magnetoplasma, Rev. Geophys. Space Phys., 19: 171.

    Article  ADS  Google Scholar 

  • Gendrin R., and Vigneron J., 1965, Essai dfinterpretation de quelques sonagrammes obtenus à l’aide des satellites Alouette-1 et Injun-3, C.R. Acad. Sci., 260: 3129.

    Google Scholar 

  • Gendrin R., and Roux A., 1980, Energization of Helium ions by proton-induced hydromagnetic waves, J. Geophys. Res., 85: 4577.

    Article  ADS  Google Scholar 

  • Ghielmetti A.G., Johnson R.G., Sharp R.D., and Shelley E.G., 1978, The latitudinal, diurnal and altitudinal distribution of upward flowing energetic ions of ionospheric origin, Geophys. Res. Lett., 5: 59.

    Google Scholar 

  • Ghielmetti A.G., Sharp R. D., Shelley E.G., and Johnson R.G., 1979, Downward flowing ions and evidence for injection of ionospheric ions into the plasmasheet, J. Geophys. Res., 84: 5781.

    Article  ADS  Google Scholar 

  • Gomberoff L., and Cuperman S., 1982, Combined effect of cold H+ and He ions in the proton cyclotron electromagnetic instability, J. Geophys. Res., 87: 100.

    Article  ADS  Google Scholar 

  • Gorney D.J., Clarke A., Croley D., Fennell J., Luhmann J., and Mizera P., 1981, The distribution of ion beams and conics below 8000 km, J. Geophys. Res., 86: 83.

    Article  ADS  Google Scholar 

  • Gurnett D.A., Shawhan S.D., Brice N.M., and Smith R.L., 1965, Ion cyclotron whistlers, J. Geophys. Res., 70: 1665.

    Google Scholar 

  • Higel B., 1978, Small scale structure of magnetospheric electron density through on-line tracking of plasma resonances, Space Sci. Rev., 22: 611.

    Article  ADS  Google Scholar 

  • Horwitz J.L., 1980, Conical distributions of low-energy ion fluxes at synchronous orbit, J. Geophys. Res., 85: 2057.

    Article  ADS  Google Scholar 

  • Horwitz J.L., 1981, ISEE-1 observations of 0++ in the magnetosphere, J. Geophys. Res., 86: 9225.

    Article  ADS  Google Scholar 

  • Horwitz J.L., Baugher C.R., Chappell C.R., Shelley E.G., Young D.T., and Anderson R.R., 1981, ISEE-1 observations of thermal plasma in the vicinity of the plasmasphere during periods of quieting magnetic activity, J. Geophys. Res., 86: 9989.

    Google Scholar 

  • Johnson J.F.E., Sojka J.J.., and Wrenn G.L., 1978, Thermal/Supra-thermal plasmas observed by the S-302 experiment on GEOS-1, Space Sci. Rev., 22: 567.

    Article  ADS  Google Scholar 

  • Johnson R.G., 1979, Energetic ion composition in the Earth’s magnetosphere, Rev. Geophys. Space Phys., 17: 696.

    Google Scholar 

  • Jones D., 1972, Refractive index and attenuation surfaces in the vicinity of the cross-over level, Planet. Space Sci., 20: 1173.

    Article  ADS  Google Scholar 

  • Kaye S.M., Shelley E.G., Sharp R.D., and Johnson, R.G., 1981, Ion composition of zipper events, J. Geophys. Res., 86: 3383.

    Article  ADS  Google Scholar 

  • Kennel C.F., and Petschek H.E., 1966, Limit on stably trapped particle fluxes, J. Geophys. Res., 71: 1.

    ADS  Google Scholar 

  • Kintner P.M., Kelley M.C., and Mozer F.S., 1978, Electrostatic hydrogen cyclotron waves near one earth radius altitude in the polar magnetosphere, Geophys. Res. Lett., 5: 139.

    Article  ADS  Google Scholar 

  • Kintner P.M., Kelley M,C., Sharp R.D., Ghielmetti A.G., Temerin M., Cattell C., Mizera P.F., and Fennell J.P., 1979, Simultaneous observations of energetic (keV) upstrearning and electrostatic hydrogen cyclotron waves, J. Geophys. Res., 84: 7201.

    Google Scholar 

  • Kitamura T., and Jacobs J.A., 1968, Ray paths of Pel waves in the magnetosphere, Planet.Space Sci., 16: 863.

    Article  ADS  Google Scholar 

  • Kodera K., Gendrin R., and de Villedary C., 1977, Complex representation of a polarized signal and its application to the analysis of ULF waves, J. Geophys. Res., 82: 1245.

    Article  ADS  Google Scholar 

  • Leer E., Johansen K.M., and Albrigtsen R., 1978, Group velocity of whistlers in a two-ion plasma; J. Geo phys. Res., 83: 3125.

    Article  ADS  Google Scholar 

  • Lin C.S., and Parks G.K., 1974, Further discussion on the cyclotron instability, J. Geophys. Res., 79: 2894.

    Article  ADS  Google Scholar 

  • Lundin R., Lyons L.R., and Pissareriko N., 1980, Observations of the ring current composition at L < 4, Geophys. Res. Lett., 6: 425.

    Article  ADS  Google Scholar 

  • Mauk B.H., and McPherron R. L., 1980, An experimental test of the electromagnetic ion cyclotron instability within the earth’s magnetosphere, Phys. Fluids, 23: 2111.

    Article  ADS  Google Scholar 

  • Mauk B.H, Mcllwain C.E., and McPherron R.L., 1981, Helium cyclotron resonance within the earth’s magnetosphere, Geophys. Res. Lett., 8: 103.

    Google Scholar 

  • Norris A.J., Johnson J.F.E., Sojka J.J., Wrenn G.L., Cornilleau-Wehrlin N., Perraut S., and Roux A., 1982, Experimental evidence for the acceleration of thermal electrons by ion cyclotron waves in the magnetosphere, J. Geophys. Res., submitted to.

    Google Scholar 

  • Okuda H., and Ashour-Abdalla M., 1981, Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron wave, Geophys. Res. Lett., 8: 811.

    Google Scholar 

  • Orsini S., Candidi M., Balsiger H., and Ghielmetti A.G., 1982, Ionospheric ions in the near earth geomagnetic tail plasma lobes, Geophys. Res. Lett., 9: 163.

    Google Scholar 

  • Perraut S., and Roux A., 1975, Respective role of the cold and warm plasma densities on the generation mechanism of ULF waves in the magnetosphere, J. Atmos. Terr. Phys., 37: 407.

    Google Scholar 

  • Perraut S., Gendrin R., and Roux A., 1976, Amplification of ion-cyclotron waves for various typical radial profiles of magnetospheric parameters, J. Atmos. Terr. Phys., 38: 1191.

    Article  ADS  Google Scholar 

  • Perraut S,, Gendrin R., Robert P., Roux A., de Villedary C., and Jones D., 1978, ULF waves observed with magnetic and electric sensors on GEOS-1, Space Sci. Rev., 22: 347.

    Google Scholar 

  • Perraut S., Roux A., Robert P., Gendrin R., Sauvaud J.A., Bosqued J.M., Kremser G., and Korth A., 1982, A systematic study of ULF waves above from GEOS-l and -2 measurements and their relationships with proton ring distributions, J. Geophys. Res., submitted to.

    Google Scholar 

  • Peterson VT. K., Sharp R.D., Shelley E.G., Johnson R.G., and Balsiger H., 1981, Energetic ion composition of the plasma sheet, J. Geophys. Res., 86: 761.

    Google Scholar 

  • Prangé R., 1978, Energetic (keV) ions of ionospheric origin in the magnetosphere. A review, Ann. Geophys., 34: 187.

    Google Scholar 

  • Rauch J.L., 1981, Etude des ondes d’ultra-basse frequence (UBF) observées à bord des satellites européens GEOS-1 et GEOS-2. Tracé de rayons dans un magnétoplasma à trois composantes (e−, H+, He+), Thèse, Université Paris-6.

    Google Scholar 

  • Rauch J.L., and Roux A., 1982, Ray tracing of ion cyclotron waves in a multi-component plasma: a magnetospheric laser, J. Geophys. Res., submitted to.

    Google Scholar 

  • Robert P., Kodera K., Perraut S., and de Villedary, C., 1979, Amplitude et polarisation des ondes UBF détectées a bord du satellite GEOS-1. Méthode d’analyse, problèmes rencontrés et solutions pratiques, Ann. Telecomm., 34: 179.

    Google Scholar 

  • Roux A., Perraut S., Rauch J.L., de Villedary, C. Kremser, G. Korth, A., and Young D.T., 1982, Wave-particle interactions near observed onboard GEOS-1 and -2, 2. Generation of ion cyclotron waves and heating of He+ ions, J. Geophys. Res., submitted to.

    Google Scholar 

  • Sharp R.D., Carr D.L., Peterson W.K., and Shelley E.G., 1981, Ion streams in the magnetotail, J. Geophys. Res., 86: 4639.

    Article  ADS  Google Scholar 

  • Smith R.L., and Brice N., 1964, Propagation in multicomponent plasmas, J. Geophys. Res., 69: 5029.

    Article  MATH  ADS  Google Scholar 

  • S-300 Experimenters, 1979, Measurements of electric and magnetic wave fields and of cold plasma parameters onboard GE0S-1; preliminary results, Planet. Space Sci., 27: 317.

    Google Scholar 

  • Troitskaya V.A., and Gul’elmi A.V., 1967, Geomagnetic pulsations and diagnostics of the magnetosphere, Space Sci. Rev., 7: 789.

    Article  Google Scholar 

  • Ungstrup E., Klumpar D.M., and Heikkila W.J., 1979, Heating of ions to suprathermal energies in the topside ionosphere by electrostatic ion cyclotron waves, J. Geophys. Res., 84: 4289.

    Article  ADS  Google Scholar 

  • Young D.T., 1979, Ion composition measurements in magnetospheric modeling, in: “Quantitative Modeling of Magnetospheric Processes”, W.P. Olson, ed., Geophys. Monogr. Ser. vol.21, AGU Washington, pp. 340–363.

    Google Scholar 

  • Young D.T., Perraut S., Roux A., de Villedary C., Gendrin R., Korth A., Kremser G., and Jones D., 1981, Wave-particle interactions near He+ observed on GEOS-1 and -2, 1. Propagation of ion cyclotron waves in He+ -rich plasma, J. Geophys. Res., 86: 6755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Gendrin, R. (1983). Effects of Heavy Ions on Microscopic Plasma Physics in the Magnetosphere. In: Hultqvist, B., Hagfors, T. (eds) High-Latitude Space Plasma Physics. Nobel Foundation Symposia Published by Plenum, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3652-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3652-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3654-9

  • Online ISBN: 978-1-4613-3652-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics