Skip to main content

On the Largest Prime Divisors of an Integer

  • Chapter
Extreme Value Theory and Applications

Abstract

Several results of number theory can be expressed in probabilistic terms and, for others, the simplest proof is by probabilistic methods. Simply take the uniform distribution on the consecutive integers 1, 2,…, N. Then arithmetic functions, when restricted to the integers 1 through N, become random variables and arithmetic means are expectations. The power of probabilistic methods lies in the fact that divisibility by distinct primes are almost independent events. On the other hand, most problems remain challenging since the errors generated by the not exact independence can be dominating in a problem when one faces an increasing number of primes. The best example is the study of large prime divisors where the results do not resemble those which one would get for independent random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Alladi and P. Erdös, On an additive arithmetic function, Pacific J. Math. 71 (1977), 275–294.

    MATH  MathSciNet  Google Scholar 

  2. K. Alladi and P. Erdos, On the asymptotic behaviour of large prime factors of an integer, Pacific J. Math. 82 (1979), 295–315.

    MATH  MathSciNet  Google Scholar 

  3. J.M. De Koninck, Sur les plus grands facteurs premiers d’un entier, Monatshefte Math. 116, 13–37 (1993).

    Article  MATH  Google Scholar 

  4. J.M. De Koninck and J. Galambos, The intermediate prime divisors of an integer, Proc. Amer. Math. Soc. 101 (1987), 213–216.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.M. De Koninck and A. Ivic, The distribution of the average prime divisor of an integer, Archiv der Math. 43 (1984), 37–43.

    Article  MATH  Google Scholar 

  6. J.M. De Koninck and A. Ivic, Arithmetic functions defined on sets of primes of positive density, (to appear).

    Google Scholar 

  7. P. Erdos and A. Ivic, On sums involving reciprocals of certain arithmetical functions, Publ. Inst. Math. Belgrade 32 (1982), 49–56.

    MathSciNet  Google Scholar 

  8. P. Erdos, A. Ivic and C. Pomerance, On sums involving reciprocals of the largest prime factor of an integer, Glasnik Matematicki 21 (1986), 27–44.

    MathSciNet  Google Scholar 

  9. J. Galambos, The sequences of prime divisors of an integer, Acta Arith. 31 (1976), 213–218.

    MATH  MathSciNet  Google Scholar 

  10. D.A. Goldston and K.S. McCurley, Sieving the positive integers by large primes, J. Number Theory 28 (1988), 94–115.

    Article  MATH  MathSciNet  Google Scholar 

  11. D.A. Goldston and K.S. McCurley, Sieving the positive integers by small primes, Trans. AMS 307 (1988), 51–62.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.L. Hafner and K.S. McCurley, On the distribution of running times of certain integer factoring algorithms, IBM Research Report, 1987.

    Google Scholar 

  13. A. Hildebrand, On the number of positive integers ≤ x and free of prime factors > y, J. Number Theory 22 (1986), 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Ivic, On the k-th prime factor of an integer, Univ. u Novom Sadu Zb. Rad. Prirodno.-Mat. Fak. Ser. Mat. 20 (1990), 63–73.

    MATH  MathSciNet  Google Scholar 

  15. A. Ivic, On large additive functions on primes of positive density, (to appear).

    Google Scholar 

  16. D.E. Knuth and L.T. Pardo, Analysis of a simple factorization algorithm, Theoretical Computer Science 3 (1976), 321–348.

    Article  MathSciNet  Google Scholar 

  17. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, 1985.

    Google Scholar 

  18. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Institut Elie Cart an, 1990.

    Google Scholar 

  19. M.C. Wunderlich and J.L. Selfridge, A design for a number theory package with an optimized trial division routine, Communications of the ACM 17 (1974), 272–276.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Koninck, JM. (1994). On the Largest Prime Divisors of an Integer. In: Galambos, J., Lechner, J., Simiu, E. (eds) Extreme Value Theory and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3638-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3638-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3640-2

  • Online ISBN: 978-1-4613-3638-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics