Ergodic Convergence in Proximal Point Algorithms with Bregman Functions

  • Osman Güler
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 1)


We prove ergodic convergence results for the proximal point algorithm with Bregman kernels. In the function minimization case, the iterates converge to a minimizer of the function in the ergodic sense. We give global convergence rate estimate for the residual f(zk) — min f(x). In the general case of finding a zero of a maximal monotone operator T, our main result states that, under very general conditions, all limit points of the ergodic solution sequence converge to a zero of T. Under slightly less general conditions, we show that either the original solution sequence convergence to a zero of T, or it stays bounded away from the zero set of T.


Nonexpansive Mapping Monotone Operator Maximal Monotone Maximal Monotone Operator Proximal Point Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin, J. P. and Ekeland I. (1984) Applied Nonlinear Analysis. Interscience Publications, John Wiley and Sons, New York.zbMATHGoogle Scholar
  2. 2.
    Bâillon, J. B. and Haddad, G. (1977). Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Israel Journal of Mathematics 26 137–150.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertsekas, D. P. (1982) Constrained Optimization and Langrange Multiplier Methods. Academic Press, New York.Google Scholar
  4. 4.
    Bregman, L. (1967) The relaxation method of finding the common points of convex sets and its applications to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.CrossRefGoogle Scholar
  5. 5.
    Brézis, H. (1973) Opérateurs Maximaux Monotones. Mathematics Studies No. 5, North-Holland, Amsterdam.Google Scholar
  6. 6.
    Brézis, H. and Lions, P; L. (1978) Produits infinis de résolvantes. Israel Journal of Mathematics, 29, 329–345.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bruck, R. E. (1983) Asymptotic behavior of nonexpansive mappings. In Fixed Points and Nonexpansive Mappings, (R. Sine, ed.) Contemporary Mathematics vol. 18, American Mathematical Society, Providence, Rhode Island, 1–47.Google Scholar
  8. 8.
    Censor, Y. and Lent, A. (1981) An interval row action method for interval convex programming. Journal of Optimization Theory and Applications 34 321–353.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Censor, Y. and Zenios, S. (1992) The proximal minimization algorithm with D-functions. Journal of Optimization Theory and Applications 73 451–464.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, G. and Teboulle, M. (1993) Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization 3 538–543.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dunford, N. and Schwartz, J. T. (1988) Linear Operators, Part I: General Theory. Interscience Publications, John Wiley and Sons, New York.zbMATHGoogle Scholar
  12. 12.
    Eckstein, J. (1993) Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Mathematics of Operations Research 18 202–226.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Güler, O. (1991) On the convergence of the proximal point algorithm for convex minimization. SIA M Journal on Control and Optimization 29 403–419.CrossRefzbMATHGoogle Scholar
  14. 14.
    Güler, O. (1992) New proximal point algorithms for convex minimization. SIAM Journal on Optimization 2 649–664.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Martinet, B. (1970) Régularisation, d’inéquations variationelles par approximations succesives. Revue Française d’Informatique et de Recherche Operationelle 4 154–159.MathSciNetGoogle Scholar
  16. 16.
    Minty, G. (1962) Monotone (nonlinear) operators in a Hilbert space. Duke Mathematics Journal 29 341–348.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Moreau, J. J. (1965) Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math., Fr. 93 273–299.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ortega, J. M. and Rheinboldt, W. C. (1970) Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York.Google Scholar
  19. 19.
    Polyak, B. T. (1987) Introduction to Optimization. Optimization Software, New York.Google Scholar
  20. 20.
    Polyak, B. T. (1989) Personal communication.Google Scholar
  21. 21.
    Rockefellar, R. T. (1970) Convex Analysis. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  22. 22.
    Rockafellar, R. T. (1976) Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 14 877–898.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rockafellar, R. T. (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1 97–116.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Teboulle, M. (1992) Entropic proximal mappings with applications to nonlinear programming. Mathematics of Operations Research 17 670–690.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tseng, P. and Bertsekas, D. P. (1993) On the convergence of the exponential multiplier method for convex programming. Mathematical Programming 60 1–19.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Osman Güler
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations