Skip to main content

Physico-Chemical Interactions between Alcohol and Biological Membranes

  • Chapter
Research Advances in Alcohol and Drug Problems

Part of the book series: Research Advances in Alcohol and Drug Problems ((AADP,volume 7))

Abstract

The search for a cogent, unifying mechanism that can be invoked to explain the multiple actions of ethanol and of other related alcohols on the physiology, biochemistry, and behavior of organisms has been pursued for many years. Multiple attempts have been made to link the development of ethanol-induced intoxication and neurological changes as well as damage to other organs to altered metabolic states of various organs following acute or chronic ethanol intake. The many changes in liver, heart, kidney, and brain metabolism caused by acute and chronic ethanol intake have been reviewed thoroughly (Hawkins and Kalant 1972; Lieber, 1979; Wallgren, 1971). The general conclusion reached from such studies is that acute and chronic ethanol intake leads to changes in lipid and carbohydrate metabolism in liver and other organs (Cherrick and Leevy, 1965; Maling et al., 1967; Lieber, 1979), that it decreases protein release from livercells and may also affect protein synthesis and degradation (Lieber, 1980; Rothschild et al., 1980), and that it alters amino acid transport and amino acid levelsin various tissues, including brain cells (Chambers et aI., 1966; Israel et aI.,1968, 1969; Hakkinen and Kulonen, 1959, 1961, 1967; Roach and Reese, 1971;Roach et aI., 1973a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Gage, P. W., and Hamill, O. P., 1977, Ethanol reduces excitatory postsynapticcurrent duration at a crustacean neuromuscular junction, Nature 266:139.

    Google Scholar 

  • Annstrong, C. M., and Binstock, L., 1964, The effects of several alcohols on the properties of the squid giant axon, J. Gen. Physiol. 48:266.

    Google Scholar 

  • Azzi, A., 1974, The use of fluorescent probes for the study of membranes, in: Method in Enzymology Vol. 32, (S. Fleischer and L. Packer, eds.) pp. 234–246, Academic Press, New York.

    Google Scholar 

  • Bangham, A. D., and Mason, W., 1979, The effect of some general anesthetics on the surface potential of lipid monolayers, Br. J. Pharmacol. 66:259.

    Google Scholar 

  • Beer, C. T., and Quastel, J. H., 1958, The effects of aliphatic alcohols on the respiration of rat brain cortex slices and rat brain mitochondria, Can. J. Biochem. Physiol. 36:543.

    Google Scholar 

  • Bell, G. H., 1973, Solubilities of normal aliphatic acids, alcohols, and alkanes in water, Chem.Phys. Lipids 10: 1.

    Google Scholar 

  • Berger, B., Carty, C. E., and Ingram, L. 0., 1980, Alcohol-induced changes in the phospholipid molecular species of Escherichia coli. J. Bacteriol. 142:1040.

    Google Scholar 

  • Bishop, G. H., 1932, Action of nerve depressants on potential, J. Cell. Compo Physiol. 1:177.

    Google Scholar 

  • Bloj, B., Morero, R. D., and Farias, R. N., 1973, Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+ -ATPase, (Na+ - K+)-ATPase and acetylcholinesterase from rat erythrocytes, FEBS Lett. 38:101.

    Google Scholar 

  • Blomstrand, R., Kager, L., and Lantto, 0., 1973, Status on studies on the ethanol-induced decrease of fatty acid oxidation in rat and human liver, Life Sci. 13: 113.

    Google Scholar 

  • Boggs, J. M., 1980, Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes, Can. J. Biochem. 58:755.

    Google Scholar 

  • Buldt, G. and Wohlgemuth, R., 1981, The headgroup conformation of phospholipids in membranes, J. Membr. Bioi. 58:81.

    Google Scholar 

  • Buldt, G., Gally, H. U., Seelig, J., and Zacci, G., 1979, Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation, J. Molec. Bioi. 134:673.

    Google Scholar 

  • Bush, F. S., Levin, H., and Levin, I. W., 1980, Cholesterol-lipid interactions: An infrared and raman spectroscopic study of the carbonyl stretching mode region of 1,2-dipalmitoyl phosphatidylcholine bilayers, Chem. Phys. Lipids 27:101.

    Google Scholar 

  • Butler, J. A. V., 1937, The energy and entropy of hydration of organic compounds, Trans. Faraday Soc. 33:229.

    Google Scholar 

  • Butler, K. W., Dugas, H., Smith, I. C. P., and Schneider, H., 1970, Cation-induced organizational change in a lipid bilayer model membrane, Biochem. Biophys. Res. Commun. 40:770.

    Google Scholar 

  • Buttke, T. M., and Ingram, L. 0., 1978, Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: Inhibition of saturated fatty acid synthesis in vivo. Biochemistry 7: 637.

    Google Scholar 

  • Buttke, T. M. and Ingram, L. 0., 1980, Ethanol-induced changes in lipid composition of Escherichia coli: Inhibition of saturated fatty acid synthesis in vitro, Arch. Biochem. Biophys. 203:565.

    Google Scholar 

  • Casal, H. L., Cameron, D. G., Smith, I. C. P., and Mantsch, H. H., 1980, Acholeplasma laidlawii membranes: A Fourier transform infrared study of the influence of potein on lipid organizationand dynamics, Biochemistry 19:444.

    Google Scholar 

  • Cederbaum, A. L., Lieber, C. S., and Rubin, E., 1974, Effects of chronic ethanol treatment on mitochondrial functions, Arch. Biochem. Biophys. 165:560.

    Google Scholar 

  • Chambers, J. W., Georg, R. H., and Bass, A. D., 1966, The effect of ethanol on the uptake of aaminoisobutyric acid by the isolated perfused rat liver, Life Sci. 5:2293.

    Google Scholar 

  • Cherrick, G. R., and Leevy, C. M., 1965, The effect of ethanol metabolism on levels of oxidized and reduced nicotinamide-adenine dinucleotide in liver, kidney, and heart, Biochim. Biophys. Acta 109:29.

    Google Scholar 

  • Chin, J. H., and Goldstein, D. B., 1977a. Drug tolerance in biomembranes: A spin label study of the effects of ethanol. Science 196:684.

    Google Scholar 

  • Chin, J. H., and Goldstein, D. B., 1977b, Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes, Mol. Pharmacol. 13:435.

    Google Scholar 

  • Chin, J. H., and Goldstein, D. B., 1981, Membrane disordering action of ethanol, Mol. Pharmacol. 19: 425.

    Google Scholar 

  • Chin, J. H., Parsons, L. M., and Goldstein, D. B., 1978, Inceased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice, Biochim. Biophys. Acta 513:358.

    Google Scholar 

  • Cicero, T. J., Badger, T. M., Bell, R. D., and Badger, T. M., 1980, Multiple effects of ethanol on the hypothalamic-pituitary gonadal axis in the male, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 463 - 478, Plenum Press, New York.

    Google Scholar 

  • Clark, A. J., 1937, The action of narcotics on enzymes and cells, Trans. Faraday Soc. 33:1057.

    Google Scholar 

  • Clark, J. W., Kalant, H., and Carmichael, F. W., 1977, Effect of ethanol tolerance on release of acetylcholine and norepinephrine by rat cerebral cortex slices. Can. J. Physiol. Pharmacol. 55: 758.

    Google Scholar 

  • Colley, C. M., and Metcalfe, J. C., 1972, The localization of small molecules in lipid bilayers, FEBS Lett. 24:241.

    Google Scholar 

  • Colton, C. A., and Colton, J. S., 1977, Depression of glutamate-mediated synaptic transmission by benzyl alcohol, Can. J. Physiol. Pharmacol. 55:917.

    Google Scholar 

  • Conrad, M. J., and Singer, S. J., 1979, Evidence for a large internal pressure in biological membranes, Proc. Natl. Acad. Sci. USA 76:5202.

    Google Scholar 

  • Conrad, M. J., and Singer, S. J., 1981, The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure, Biochemistry 20:808.

    Google Scholar 

  • Cullis, P. R., and De Kruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399.

    Google Scholar 

  • Cullis, P. R., Hornby, A. P., and Hope, M. J., 1980, Effects of anesthetics on lipid polymorphism in: Molecular Mechanisms of Anesthesia (B. R. Fink, ed.) pp. 397 - 403, Raven Press, New York.

    Google Scholar 

  • Curran, M., and Seeman, P., 1977, Alcohol tolerance in a cholinergic nerve terminal: Relatioa to the membrane expansion-fluidization theory of ethanol action, Science 197:910.

    Google Scholar 

  • Curran, M., and Seeman, P., 1979, Mechanisms of ethanol tolerance at a cholinergic nerve terminal, Drug Alcohol Depend. 4:167.

    Google Scholar 

  • Davis, D. G., Inesi, G., and Gulik-Krzywicki, T., 1976, Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane, Biochemistry 15:1271.

    Google Scholar 

  • Davoust, J., Bienvenue, A., Fellmann, P., and Devaux, P. F., 1980, Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles: Effect of lipid phase transitions, Biochim.

    Google Scholar 

  • Biophys. Acta 596:28.

    Google Scholar 

  • De Kruijff, B., Van Zoelen, E. J. J., and Van Deenen, L. L. M., 1978, Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles, Biochim. Biophys. Acta 509: 537.

    Google Scholar 

  • De Kruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and De Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31p_NMR and freeze-fracture electron-microscopy, Biochim. Biophys. Acta 555:200.

    Google Scholar 

  • De Kruijff, B., Rietveld, A., and Cullis, P. R., 1980, 31P_NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver, Biochm. Biophys. Acta 600:343.

    Google Scholar 

  • Dickens, B. F., and Thompson, G. A., Jr., 1981, Rapid membrane response during low-temperature acclimations: Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes, Biochim. Biophys. Acta 664:211.

    Google Scholar 

  • Dinovo, E. C., Gruber, B., and Noble, E. P., 1976, Alterations of fast-reacting sulfhydryl groups of rat brain microsomes by ethanol, Biochem. Biophys. Res. Comm. 68:975.

    Google Scholar 

  • Dockter, M. E., Trumble, W. R., and Magnuson, J. A., 1978, Membrane lateral phase separations and chlortetracycline transport by Bacillus megaterium, Proc. Natl. Acad. Sci. USA 75:1319.

    Google Scholar 

  • Erickson, C. K., and Graham, D. T., 1973, Alteration of cortical and reticular acetylcholine release by ethanol in vivo, J. Pharmacol. Exp. Ther. 185:583.

    Google Scholar 

  • Fahey, P. F., Kappel, D. E., Barak, L. S., Wolf, D. E., Elson, E. L., and Webb, W. W., 1977, Lateral diffusion in planar lipid bilayers, Science 195:305.

    Google Scholar 

  • Ferguson, J., 1939, The use of chemical potentials as indices of toxicity, Proc. Roy. Soc. 8127:387.

    Google Scholar 

  • French, S. W., Ihrig, T. J., and Morin, R. J., 1970, Lipid composition of RBC ghosts, liver mitochondria and microsomes of ethanol-fed rats, Q. J. Stud. Alcohol 31: 801.

    Google Scholar 

  • Friedman, M. B., Erickson, C. K., and Leslie, S. W., 1980, The effects of acute and chronic ethanol administration on whole mouse brain synaptosomal calcium influx, Biochem. Pharmacol. 29:1903.

    Google Scholar 

  • Fuller, S. D., Capaldi, R. A., and Henderson, R., 1979, Structure of cytochrome c oxidase in deoxycholate-derived two-dimensional crystals, J. Mol. Bioi. 134:305.

    Google Scholar 

  • Gaffney, B. J., 1974, Spin-label measurements in membranes, in: Methods in Enzymalogy Vol. 32 ( S. Fleischer and L. Packer, eds.) pp. 161–197, Academic Press, New York.

    Google Scholar 

  • Gage, P. W., 1965, The effect of methyl, ethyl, and n-propyl alcohol on neuromuscular transmission in the rat, J. Pharmacol. Exp. Ther. 150:236.

    Google Scholar 

  • Gastineau, C. F., 1979, Alcohol and the endocrine system, in: Metabolic Effects of Alcohol ( P Avogaro, C. R. Sirtori, and E. Tremoli, eds.), pp. 103–110, Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Gerritsen, W. J., De Kruijff, B., Verkieij, A. J., and De Gier, J., 1980a, Ca2+ -induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardio lipin bilayers, Biochim. Biophys. Acta 598:554.

    Google Scholar 

  • Gerritsen, W. J., Henricks, P. A. J., De Kruijff, B., and Vn Deenen, L. L. M., 1980b, The transbilayer movement of phosphatidylcholine in vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane, Biochim. Biophys. Acta 600:607.

    Google Scholar 

  • Godin, D. V., and Herring, F. G., 1981, Spin label studies of erythrocytes with abnormal lipid composition: Comparison of red cells in a hereditary hemolytic syndrome and lecithin: Cholesterol acyltansferase deficiency, J. Supramolec. Str. Cell. Biochem. 15:213.

    Google Scholar 

  • Gordon, L. M., Sauerheber, R. D., Esgate, J. A., Dipple, I., Marchmont, R. J., and Houslay, M. D., 1980, The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes, J. Bioi. Chem. 255: 4519.

    Google Scholar 

  • Gorman, R. E., and Bitensky, M. W., 1970, Selective activation by short chain alcohols of glucagon responsive adenyl cyclase in liver, Endocrinology 87:1075.

    Google Scholar 

  • Greene, H. L., Herman, R. H., and Kraemer, S., 1971, Stimulation of jejunal adenyl cyclase by ethanol, J. Lab. Clin. Med. 78:336.

    Google Scholar 

  • Grisham, C. M., and Barnett, R. E., 1973, The effects of long-chain alcohols on membrane lipids and the (Na+ - K+)-ATPase, Biochim. Biophys. Acta 311:417.

    Google Scholar 

  • Hakkinen, H-M., and Kulonen, E., 1959, Increase in the oy-aminobutyric acid content of rat brain after ingestion of ethanol, Nature 184:726.

    Google Scholar 

  • Hakkinen, H-M., and Kulonen, E., 1961, The effect of ethanol on the amino acids of the rat brain, with a reference to the administration of glutamine, Biochem. J. 78:588.

    Google Scholar 

  • Hakkinen, H-M., and Kulonen, E., 1963, Comparison of various methods for the determination of gamma-aminobutyric acid and other amino acids in rat brain with reference to ethanol intoxication, J. Neurochem. 10:489.

    Google Scholar 

  • Hakkinen, H-M., and Kulonen, E., 1967, Amino acid metabolism in various fractions of rat-brain homogenates with special reference to the effect of ethanol, Biochem. J. 105:261.

    Google Scholar 

  • Hakkinen, H-M., Kulonen, E., and Wallgren, H., 1963, The effect of ethanol and electrical stimulation on the amino acid metabolism of rat-brain-cortex slices in vitro, Biochem. J. 88:488.

    Google Scholar 

  • Harger, R. N., Kulpieu, H. R., and Lamb, E. B., 1937, The speed with which various parts of the body reach equilibrium in the storage of alcohol, J. Bioi. Chem. 120:689.

    Google Scholar 

  • Harper, J. F., and Brooker, G., 1980, Alcohol potentiation of isoproterenol-stimulated cyclic AMP accumulation in rat parotid, J. Cyclic Nucleotide Res. 6:51.

    Google Scholar 

  • Harris, R. A., and Schroeder, F., 1981, Ethanol and the physical properties of brain membranes, Mol. Pharmacol. 20:128.

    Google Scholar 

  • Hauser, H., Pascher,l., Pearson, R. H., and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650:21.

    Google Scholar 

  • Hawkins, R. D., and Kalant, H., 1972, The metabolism of ethanol and its metabolic effects, Pharmacol. Rev. 24:67.

    Google Scholar 

  • Henderson, V. E., 1930, The present status of the theories of narcosis, Physiol. Rev. 10:172.

    Google Scholar 

  • Hill, M. W., 1974, The effect of anesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyl lecithin. I. The normal alcohol up to C = 9 and three inhalation anesthetics, Biochim. Biophys. Acta 356:117.

    Google Scholar 

  • Hill, M. W., 1975, Partition coefficients of some anesthetic-like molecules between water and smectic mesophases of dipalmitoyl phosphatidylcholine, Chern. Soc. Trans. 3:149.

    Google Scholar 

  • Hill, M. W., and Bangham, A. D., 1975, General depressant drug dependency: A biophysical hypothesis, in: Alcohol Intoxication and Withdrawal Experimental Studies, II ( M. M. Gross, ed.) pp. 1–9, Plenum Press, New York.

    Google Scholar 

  • Hitchcock, P. B., Mason, R., Thomas, K. M., and Shipley, G. G., 1974, Structural chemistry of 1,2-dilauroyl-DL-phosphatidyl-ethanolamine: Molecular conformation and intermolecular packing of phospholipids, Proc. Natl. Acad. Sci. USA 71:3036.

    Google Scholar 

  • Hoffman, P. L., and Tabakoff, B., 1977, Alternations in dopamine receptor sensitivity by chronic ethanol treatment, Nature 268:551.

    Google Scholar 

  • Hoffman, P. L., and Tabakoff, B., 1980, Modification of dopamine receptor-mediated processes after chronic ethanol intoxicat:on: A possible mechanism, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 21 - 42, Plenum Press, New York.

    Google Scholar 

  • Hornby, A. P., and Cullis, P. R., 1981, Influence of local and neutral anesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine, Biochim. Biophys. Acta 647:285.

    Google Scholar 

  • Hruska, R. E., and Silbergeld, E. K., 1980, Inhibition of [3Hl spiroperidol binding by in vitro addition of ethanol, J. Neurochem. 35:750.

    Google Scholar 

  • Hwang, D. H., LeBlanc, P., and Chanmugan, P., 1981, In vitro and in vivo effects of ethanol on the formation of endoperoxide metabolites in rat platelets, Lipids 16:583.

    Google Scholar 

  • Ingram, L. 0., 1976, Adaptation of membrane lipids to alcohols, J. Bacteriol. 125:670.

    Google Scholar 

  • Ingram, L. 0., 1977, Preferential inhibition of phosphatidyl-ethanolamine synthesis in E. coli by alcohols, Can. J. Microbiol. 23:779.

    Google Scholar 

  • Ingram, L. 0., Ley, K. D., and Hoffman, E. M., 1978, Drug-induced changes in lipid composition of E. coli and of mammalian cells in culture: Ethanol, pentobarbital and chlorpromazine, Life Sci. 22:489.

    Google Scholar 

  • Ingram, L. 0., Dickens, B. F., and Buttke, T. M., 1980, Reversible effects of ethanol on E. coli, in: Biological Effects of Alcohol ( H. Beglieter, ed.), pp. 299 - 337, Plenum Press, New York.

    Google Scholar 

  • Inoue, F., and Frank, G. B., 1967, Effects of ethyl alcohol on excitability and on neuromuscular transmission in frog skeletal muscle, Br. J. Pharmacol. Chemother. 30:186.

    Google Scholar 

  • Israel, Y., and Kalant, H., 1963, Effect of ethanol on the transport of sodium in frog skin, Nature 200: 476.

    Google Scholar 

  • Israel, Y., and Salazar, I., 1967, Inhibition of brain microsomal adenosine triphosphatases by general depressants, Arch. Biochem. Biophys. 122:310.

    Google Scholar 

  • Israel, Y., Kalant, H., and Laufer, I., 1965, Effect of ethanol on Na,K,Mg-stimulated microsomal ATPase activity, Biochem. Pharmacol. 14:1803.

    Google Scholar 

  • Israel, Y., Kalant, H., and LeBlanc, A. E., 1966, Effects of lower alcohols on potassium transport and microsomal adenosinetriphosphatase activity of the rat cerebral cortex, Biochem. J. 100: 27.

    Google Scholar 

  • Israel, Y., Salazar, I., and Rosenmann, E., 1968, Inhibitory effects of alcohol on intestinal amino acid transport in vivo and in vitro, J. Nutr. 96:499.

    Google Scholar 

  • Israel, Y., Valenzuela, I. E., Salazar, I., and Ugarte, G., 1969, Alcohol and amino acid transport in the human small intestine, J. Nutr. 98:222.

    Google Scholar 

  • Israel, Y., Carmichael, F. J., and Macdonald, J. A., 1975, Effects of ethanol on electrolyte metabolism and neurotransmitter release in the CNS, in: Alcohol Intoxication and WitJuirawal ( M. M. Gross, ed.), pp. 55 - 64, Plenum Press, New York.

    Google Scholar 

  • Jacobs, R., and Oldfield, E., 1979, Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin- dipalmitoyllecithin and dimyristoyllecithin-cholesterol mixtures, Biochemistry 18: 3280.

    Google Scholar 

  • Jain, M. K., and Wu, N. M., 1977, Effect of small molecules on the dipalmitoyllecithin liposomal bilayer: III. Phase transition in lipid bilayer, J. Memb. Bioi. 34:157.

    Google Scholar 

  • Johnson, D. A., Lee, N. M., Cooke, R., and Loh, H. H., 1979, Ethanol-induced fluidization of brain lipid bilayers: Required presence of cholesterol in membranes for the expression of tolerance, Mol. Pharmacol. 15:739.

    Google Scholar 

  • Johnson, D. A., Lee, N. M., Cooke, R., and Loh, H., 1980a, Adaptation to ethanol-induced fluidization of brain lipid bilayers: Cross-tolerance and reversibility, Mol. Pharmacol. 17:52.

    Google Scholar 

  • Johnson, D. A., Friedman, H. J., Cooke, R., and Lee, N. M., 1980b, Adaptation of brain lipid bilayers to ethanol-induced fluidization, Biochem. Pharmacol. 29:1673.

    Google Scholar 

  • Jost, P. c., and Griffith, O. H., 1980, Lipid-lipid and lipid-protein interactions in membranes, Pharmacol. Biochem. Behav. 13 (Supp!. 1): 155.

    Google Scholar 

  • Kalant, H., 1971, Absorption, diffusion, distribution, and elimination of ethanol: Effects on biological membranes, in: The Biology of Alcoholism Vo!' I ( B. Kissin and H. Begleiter, eds.), pp. 1 - 62, Plenum Press, New York.

    Google Scholar 

  • Kalant, H., and Grose, W., 1967, Effects of ethanol and pentobarbital on release of acetylcholine from cerebral cortex slices, J. Pharmacol. Exp. Ther. 158:386.

    Google Scholar 

  • Kalant, H., and Rangaraj, N., 1981, Interaction of catecholamines and ethanol on the kinetics of rat brain (Na+ -K+)-ATPase, Eur. J. Pharmacol. 70:157.

    Google Scholar 

  • Kamaya, H., Kaneshina, S., and Ueda, 1., 1981, Partition eqUIlibrium of inhalation anesthetics and alcohols between water and membranes of phospholipids with varying acyl chain-lengths, Biochim. Biophys. Acta 646:135.

    Google Scholar 

  • Kameyama, Y., Yoshioka, S., and Nozawa, Y., 1980, The occurrence of direct de saturation of phospholipid acyl chain in Tetrahymena pyriformis: Thermal adaptation of membrane phospholipid, Biochim. Biophys. Acta 618:214.

    Google Scholar 

  • Karlsson, K-A., Samuelsson, B. E., and Steen, G. 0.,1974, The lipid composition and Na+ - K+dependent adenosine-triphosphatase activity of the salt (nasal) gland of eider duck and herring gull. A role for sulphatides in sodium-ion transport, Eur. J. Biochem. 46:243.

    Google Scholar 

  • Khan, A., Rilfors, L., Wieslander, A., and Lindblom, G., 1981, The effect of cholesterol on the phase structure of glucolipids from Acholeplasma laidlawii membranes, Eur. J. Biochem. 116: 215.

    Google Scholar 

  • Klemm, W. R., 1978, Ethanol tolerance: Evidence of “protective” effects on brains of adult rats, J. Neurosci. Res. 3:353.

    Google Scholar 

  • Klemm, W. R., and Engen, R. L., 1978, Biochemical markers of ethanol effects on brain, J. Neurosci. Res. 3:341.

    Google Scholar 

  • Klemm, W. R., and Engen, R. L., 1979, Acutely administered ethanol decreases whole-brain sialic acid and cerebellar 2-deoxyribose, J. Neurosci. Res. 4:371.

    Google Scholar 

  • Klotz, I. M., 1946, The application of the law of mass action to binding by proteins. Interactions with calcium, Arch. Biochem. 9:109.

    Google Scholar 

  • Kondo, M., and Kasai, M., 1973, The effects of n-Alcohols on sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 311:391.

    Google Scholar 

  • Kuriyama, K., and Israel, M. A., 1973, Effect of ethanol administration on cyclic 3',5' –adenosine monophosphate metabolism in brain, Biochem. Pharmacol. 22:2919.

    Google Scholar 

  • Lane, L. K., Potter, J. D., and Collins, J. H., 1979, Large-scale purification of lamb kidney Na,KATPase and its protein subunits, Prep. Biochem. 9:157..

    Google Scholar 

  • Larrabee, M. G., and Posternak, J. M., 1952, Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15:91.

    Google Scholar 

  • Lee, A. G., 1976, Interactions between anesthetics and lipid mixtures. Normal alcohols, Biochemistry 15: 2448.

    Google Scholar 

  • Lenaz, G., Bertoli, E., Curatola, G., Mazzanti, L, and Bigi, A., 1976, Lipid protein interactions in mitochondria: Spin and fluorescence probe studies on the effect of n-alkanols on phospholipid vesicles and mitochondrial membranes, Arch. Biochem. Biophys. 172:278.

    Google Scholar 

  • Lenaz, G., Curatola, G., Mazzanti, L., Bertoli, E., and Pastuszko, A., 1979, Spin label studies on the effect of anesthetics in synaptic membranes, 1. Neurochem. 32:1689.

    Google Scholar 

  • Lentz, B. R., Barrow, D. A., and Hoechli, M., 1980, Cholesterol-phosphatidylcholine interactions in multilamellar vesicles, Biochemistry 19: 1943.

    Google Scholar 

  • Levental, M., and Tabakoff, B., 1980, Sodium-potassium-activated adenosine triphosphatase activity as a measure of neuronal membrane characteristics in ethanol-tolerant mice, 1. Pharmacol. Exp. Ther. 212:315.

    Google Scholar 

  • Lieber, C. S., 1979, Pathogenesis and diagnosis of alcoholic liver injury, in: Metabolic Effects of Alcohol (P. Avogaro, C. R., Sirtori, and E. Tremoli, eds.), pp. 237–258, Elsevier/North HollandBiomedical Press, Amsterdam.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M., 1977, Metabolic effects of alcohol on the liver, in: Metabolic Aspects of Alcoholism (c. S. Lieber, ed.), pp. 31-79, University Press, Baltimore.

    Google Scholar 

  • Lieber, C. S., and Schmid, R., 1961, The effect of ethanol on fatty acid stimulation of hepatic fatty acid synthesis in vitro, 1. Clin. Invest. 40:394.

    Google Scholar 

  • Lieber, C. S., Spritz, N., and De Carli, L. M., 1966, Role of dietary, adipose, and endogenously synthesized fatty acids in the pathogenesis of the alcoholic fatty liver, 1. Clin. Invest. 45:51.

    Google Scholar 

  • Lieber, C. S., Lefevre, A., Spritz, N., Feinman, L., and DeCarli, L. M., 1967, Difference in hepatic metabolism of long- and medium-chain fatty acids: The role of fatty acid chain length in the production of the alcoholic fatty liver, 1. Clin. Invest. 46:1451.

    Google Scholar 

  • Lieber, C. S., Baraona, E., Matsuda, Y., Salaspuro, M., Hasumura, Y., and Matsuzaki, S., 1980, Hepatotoxicity of acetaldehyde,in: Biological Effects of Alcohol (H. Begleiter, ed.), pp. 397-411,Plenum Press, New York.

    Google Scholar 

  • Lin, D. C., 1980, Involvement of the lipid and protein components of (Na+ -K+)-adenosine triphosphatase in the inhibitory action of alcohol, Biochem. Pharmacol. 29:771.

    Google Scholar 

  • Lindblom, G., Johansson, L. B. -A., and Arvidson, G., 1981, Effect of cholesterol in membranes. Pulsed nuclear magnetic resonance measurements of lipid lateral diffusion, Biochemistry 20:2204.

    Google Scholar 

  • Littleton, J. M., 1977, Synaptosomal membrane lipids of mice during continuous exposure to ethanol, 1. Pharm. Pharmac. 29:579.

    Google Scholar 

  • Littleton, J. M., Grieve, S. J., Griffiths, P. J., and John, J. R., 1980, Ethanol-induced alteration in membrane phospholipid composition: Possible relationship to development of cellular tolerance to ethanol, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 7 - 19, Plenum Press, New York.

    Google Scholar 

  • Luzzati, V., 1968, X-ray diffraction studies of lipid-water systems, in: Biological Membranes ( D. Chapman, ed.), pp. 71 - 123, Academic Press, New York.

    Google Scholar 

  • Luzzati, V., and Husson, F., 1962, The structure of the liquid-crystalline phases of lipid-water systems, 1. Cell Bioi. 12:207.

    Google Scholar 

  • Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoyl phosphatidyIcholines, Biochemistry 17:2464.

    Google Scholar 

  • McConnell, H. M., and McFarland, B. G., 1972, The flexibility gradient in biological membranes, Ann. N.Y. Acad. Sci. 195: 207.

    Google Scholar 

  • McConnell, D. G., Dangler, C. A., Eadie, D. M., and Litman, B. J., 1981, The effect of detergent selection on retinal outer segment A2801A5oo ratios, 1. Bioi. Chem. 256:4913.

    Google Scholar 

  • Maclennan, D. H., 1970, Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum, 1. Bioi. Chem. 245:4508.

    Google Scholar 

  • Maling, H. M., Highman, B., Hunter, J. M., and Butler, Jr., W. M., 1967, Blood a1cohollevels, triglyceride fatty livers, and pathologic changes in rats after single large doses of alcohol, in: Biochemical Factors in Alcoholism ( R. P. Maickel, ed.), pp. 185 - 199, Pergamon Press, Oxford.

    Google Scholar 

  • Mandel, P., Ledig, M., and M’Paria, J-R., 1980, Ethanol and neuronal metabolism, Pharmacol. Biochem. Behav. 13 (Suppl. 1): 175.

    Google Scholar 

  • Meyer, H. H., and Gottlieb, R., 1926, in: Experimental Pharmacology as a Basis for Therapeutics (V. E. Henderson, translator), p. 121, J. B. Lippincott, Philadelphia.

    Google Scholar 

  • Meyer, K. H., 1937, Contributions to the theory of narcosis, Trans. Faraday Soc. 33:1062.

    Google Scholar 

  • Meyer, K. H., and Hemmi, H., 1935, Beitrage zur Theorie der Narkose. III, Biochem. Z. 277: 39.

    Google Scholar 

  • Miceli, J. N., and Ferrell, W. J., 1973, Effects of ethanol on membrane lipids. III. Quantitative changes in lipid and fatty acid composition of nonpolar and polar lipids of mouse totalliver, mitochondria, and microsomes following ethanol feeding, Lipids 8:722.

    Google Scholar 

  • Michaelis, E. K., and Myers, S. L., 1979, Calcium binding to brain synaptosomes, Biochem. Pharmacol. 28:2081.

    Google Scholar 

  • Michaelis, E. K., Mulvaney, M. J., and Freed, W. J., 1978, Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity, Biochem. Pharmacol. 27:1685.

    Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., and Freed, W. J. 1980b, Chronic ethanol intake and synaptosomal glutamate binding activity, in: Biological Effects of Alcohol (H. Begleiter, ed.), pp. 43-56, Plenum Press, New York.

    Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., Belieu, R. M., Grubbs, R. D., and Magruder, C., 1980c, Effects of in vitro ethanol addition on brain synaptic membrane glutamate binding, Br. Res.Bull. 5 (Suppl. 2): 647.

    Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., Chang, H. H., Grubbs, R. D., and Kuonen, D. R., 1981, Molecular characteristics of glutamate receptors in the mammalian brain, Molec. Cell. Biochem. 38: 163.

    Google Scholar 

  • Moore, J. W., Ulbricht, W., and Takata, M., 1964, Effect of ethanol on the sodium and potassium conductances of the squid axon membrane. J. Gen. Physiol. 48:279.

    Google Scholar 

  • Morgan, E. P., and Phillis, J. W., 1975, The effects of ethanol on acetylcholine release from the brain of unanesthetized cats, Gen. Pharmacol. 6:281.

    Google Scholar 

  • Moscatelli, E. A., and Demediuk, P., 1980, Effects of chronic consumption of ethanol and 10wthiamin, low-protein diets on the lipid consumption of rat whole brain and brain membrane, Biochim. Biophys. Acta 596:331.

    Google Scholar 

  • Mountcastle, D. B., Biltonen, R. L., and Halsey, M. J., 1978, Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphaticy1choline liposomes, Proc. Natl. Acad. Sci. USA 75:4906.

    Google Scholar 

  • Mullins, L. J., 1954, Some physical mechanisms in narcosis, Chem. Rev. 54:289.

    Google Scholar 

  • Nalecz, M. J., Zborowski, J., Famulski, K. S., and Wojtczak, L., 1980, Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated into liposomes, Eur. J. Biochem. 112:75.

    Google Scholar 

  • Nandini-Kishore, S. G., Mattox, S. M., Martin, C. E., and Thompson, G. A., 1979, Membrane changes during growth of Tetrahymena in the presence of ethanol, Biochim. Biophys. Acta 551: 315.

    Google Scholar 

  • Nervi, A. M., Peluffo, R. 0., Brenner, R. R., and Leikin, A. I., 1980, Effect of ethanol administration on fatty acid desaturation. Lipids 15:263.

    Google Scholar 

  • Nikander, P., and Wallgren, H., 1970, Ethanol, electrical stimulation, and net movements of sodium and potassium in rat bain tissue in vitro, Acta Physiol. Scand. 8O: 27A.

    Google Scholar 

  • Noble, E. P., Syapin, P. J., Vigran, R., and Rosenberg, A., 1976, Neuraminidase-releasable surface sialic acid of cultured astroblasts exposed to ethanol, J. Neurochem. 27:217.

    Google Scholar 

  • Noordam, P. C., Van Echteld, C. J. A., De Kruijff, B., and De Gier, J., 1981, Rapid transbilayer movement of phosphatidylcholine in unsaturated phosphatidylethanolamine-containing model membranes, Biochim. Biophys. Acta 646:483.

    Google Scholar 

  • Okada, K., and Adachi, M., 1962, Effect of ethyl alcohol on the end-plate potential, J. Physiol. Soc. Jpn, 23: 655.

    Google Scholar 

  • Oldfield, E., Meadows, M., Rice, D., and Jacobs, R., 1978, Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry 17:2727.

    Google Scholar 

  • Ontko, J. A., 1973, Effects of ethanol on the metabolism of free fatty acids in isolated liver cells, J. Lipid Res. 14:78.

    Google Scholar 

  • Papahadjopoulos, D., Cowden, M., and Kimelberg, H., 1973, Role of cholesterol in membranes: Effects on phospholipid-protein interactions, membrane permeability, and enzymatic activity, Biochim. Biophys. Acta 330:8.

    Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448:265.

    Google Scholar 

  • Paterson, S. J., Butler, K. W., Huang, P., Labelle, J., Smith, I. C. P., and Schneider, H., 1972, The effects of alcohols on lipid bilayers: A spin label study, Biochim. Biophys. Acta 266:597.

    Google Scholar 

  • Pearson, R. H., and Pascher, I., 1979, The molecular structure oflecithindihydrate, Nature 281:499. Phillis, J. W., and Jhamandas, K., 1971, The effects of chlorpromazine and ethanol on in vivo release of acetylcholine from the cerebral cortex, Compo Gen. Pharmacol. 2:306.

    Google Scholar 

  • Potter, L. T., 1974, a-Bungarotoxin (and similar a-neurotoxins) and nicotinic acetylcholine receptors, in: Methods in Enzymology Vol. XXXII (S. Fleischer and L. Packer, eds.), pp. 309–323, Academic Press, New York.

    Google Scholar 

  • Pringle, M. J., Brown, K. B., and Miller, K. W., 1981, Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols?, Mol. Pharmacol. 19:49.

    Google Scholar 

  • Quastel, J. H., 1965, Effects of drugs on metabolism of the brain in vitro, Brit. Med. Bull. 21:49.

    Google Scholar 

  • Rabin, R. A., and Molinoff, P. B., 1981, Activation of adenylate cyclase by ethanol in mouse striatal tissue, J. Pharmacol. Exp. Ther. 216:129.

    Google Scholar 

  • Rabin, R. A., Wolfe, B. B., Dibner, M. D., Zahniser, N. R., Melchior, C., and Molinoff, P. B., 1980, Effects of ethanol administration and withdrawal on neurotransmitter receptor systems in C57 mice, J. Pharmacol. Exp. Ther. 213:491.

    Google Scholar 

  • Rand, R. P., and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta 255:484.

    Google Scholar 

  • Rangaraj, N., and Kalant, H., 1978, Effects of ethanol withdrawal, stress and amphetamine on rat brain (Na+ -K+)-ATPase, Biochem. Pharmacol. 27:1139.

    Google Scholar 

  • Rangaraj, N., and Kalant, H., 1979, Interaction of ethanol and catecholamines on rat brain (Na+ - K+)-ATPase, Can. J. Physiol. Pharmacol. 57:1098.

    Google Scholar 

  • Ranagaraj, N., and Kalant, H., 1980a, a-Adreno receptor mediated alteration of ethanol effects on (Na+ - K+)-ATPase of rat neuronal membranes, Can. J. Physiol. Pharmacol. 58:1342.

    Google Scholar 

  • Rice, D. M., Hsuang, J. C., King, T. E., and Oldfield, E., 1979a, Protein-lipid interactions. Highfield deuterium and phosphorous nuclear magnetic resonance spectroscopic investigation of the cytochrome oxidase-phospholipid interactions and the effects of cholate, Biochemistry 18: 5885.

    Google Scholar 

  • Rice, D. M., Meadows, M. D., Scheinman, A. 0., Goni, F. M., Gomez-Fernandez, J. C., Moscarello, M. A., Chapman, D., and Oldfield, E., 1979b, Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2+, Mg2+ ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol, Biochemistry18:5893.

    Google Scholar 

  • Richter, J. A., and Werling, L. L., 1979, K-stimulated acetylcholine release: Inhibition by several barbiturates and chloral hydrate but not by ethanol, chlordiaze-poxide, or 1l-OH-A9-tetrahydrocannabinol, 1. Neurochem. 32:935.

    Google Scholar 

  • Roach, M. K., and Reese, W. N., 1971, Effect of ethanol on glucose and amino acid metabolism in brain, Biochem. Pharmacol. 20:2805.

    Google Scholar 

  • Roach, M. K., Davis, D. L., Pennington, W., and Nordyke, E. L., 1973a, Effect of ethanol on the uptake by rat brain synaptosomes of [3H]DL-norepinephrine, [3H]5 hydroxytryptamine, [3H]-GABA, and [3H] glutamate, Life Sci. 12:433.

    Google Scholar 

  • Roach, M. K., Khan, M. M., Coffman, R., Pennington, W., and Davis, D. L., 1973b, Brain (Na+ + K +)-activated adenosine triphosphatase activity and neurotransmitter uptake in alcohol-dependent rats, Brain Res. 63:323.

    Google Scholar 

  • Roelofsen, B., and van Deenen, L. L. M., 1973, Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts, Eur. 1. Biochem. 40:245.

    Google Scholar 

  • Romans, A. Y., Allen, T. M., Meckes, W., Chiovetti, R., Jr., Sheng, L., Kercret, H., and Segrest, J. P., 1981, Incorporation of the transmembrane hydrophobic domain of glycophorin into small unilammelar phospholipid vesicles: Ion flux studies, Biochim. Biophys. Acta 642:135.

    Google Scholar 

  • Ross, D. H., 1977, Adaptive changes in Ca2+ -membrane interactions following chronic ethanol exposure, Adv. Exp. Med. Bioi. 85A: 459.

    Google Scholar 

  • Ross, D. H., and Cardenas, H. L., 1980, Calcium receptor binding in synaptic membranes of ICR,C57,DBA mice after ethanol exposure, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 57 - 63, Plenum Press, New York.

    Google Scholar 

  • Ross, D. H., Kibler, B. C., and Cardenas, H. L., 1977, Modification of glycoprotein residues as Ca2+ receptor sites after chronic ethanol exposure, Drug Alcohol Depend. 2:305.

    Google Scholar 

  • Ross, D. H., Garrett, K. M., and Cardenas, H. L., 1979, Role of calcium in ethanol-membrane interactions: A model for tolerance and dependence, Drug Alcohol Depend. 4: 1.

    Google Scholar 

  • Roth, S., and Seeman, P., 1972, The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not, Biochim. Biophys. Acta 255:207.

    Google Scholar 

  • Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195:743.

    Google Scholar 

  • Rothschild, M. A., Oratz, M., Morland, J., Schreiber, S. S., Burks, A., and Martin, B., 1980, Effects of ethanol on protein synthesis and secretion, Pharmacol. Biochem. Behav. 13 (Suppl. 1): 31.

    Google Scholar 

  • Rottenberg, H., Robertson, D. E., and Rubin E., 1980, The effect of ethanol on the temperature dependence of respiration and ATPase activities of rat liver mitochondria, Lab. Invest. 42: 318.

    Google Scholar 

  • Rousselet, A., and Devaux, P. F., 1978, Interaction between spin-labeled rhodopsin and spin-labeled phospholipids in the retinal outer segment disc membranes. FEBS Lett. 93:161.

    Google Scholar 

  • Rytting, J. H., Houston, L. P., and Higuchi, T., 1978, Thermodynamics group contribution for the hydroxyl, amino, and methylene groups, 1. Pharm. Sci. 67:615.

    Google Scholar 

  • Scandella, C. J., Hayward, J. A., and Lee, N., 1979, Cholesterol levels and plasma membrane fluidity in 3T3 and SV101-3T3 cells, 1. Supramolec. Struct. 11:477.

    Google Scholar 

  • Scatchard, G., 1949, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51: 660.

    Google Scholar 

  • Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W., and Elson, E., L., 1977, Lateral transport of a lipid probe and labeled proteins on a cell membrane, Science 195: 307.

    Google Scholar 

  • Seelig, J., 1977, Deuterium magnetic resonance: Theory and application of lipid membranes Q. Rev. Biophys. 10:353.

    Google Scholar 

  • Seelig, J., 1978, Phosphorous-31 nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta, 505:105.

    Google Scholar 

  • Seelig, J., and Browning, J. L., 1978, General features of phospholipid conformation in membranes, FEBS Lett. 92:41.

    Google Scholar 

  • Seelig, J., and Niederberger, W., 1974, Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments, Biochemistry, 13:1585.

    Google Scholar 

  • Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.

    Google Scholar 

  • Seeman, P., 1966a, Erythrocyte membrane stabilization by steroids and alcohols; a possible model for anesthesia, Biochem. Pharmac. 15:1632.

    Google Scholar 

  • Seeman, P., 1966b, Erythrocyte membrane stabilization by local anesthetics and tranquilizers, Biochem. Pharmacol. 15: 1753.

    Google Scholar 

  • Seeman, P., 1966c, A method for distinguishing specific from nonspecific hemolysins, Biochem. Pharmacol. 15: 1767.

    Google Scholar 

  • Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev. 24:583.

    Google Scholar 

  • Seeman, P., 1974, The membrane expansion theory of anesthesia: Direct evidence using ethanol and a high-precision density meter, Experientia 30:759.

    Google Scholar 

  • Seeman, P., and Roth, S., 1972, General anesthetics expand cell membranes at surgical concentrations, Biochim. Biophys. Acta 255:171.

    Google Scholar 

  • Seeman, P., Kwant, W.O., Sauks, T., and Argent, W., 1969, Membrane expansion of intact erythrocytes by anesthetics, Biochim. Biophys. Acta 183:499.

    Google Scholar 

  • Seeman, P., Roth, S., and Schneider, H., 1971a, The membrane concentrations of alcohol anesthetics, Biochim. Biophys. Acta 225:171.

    Google Scholar 

  • Seeman, P., Kwant, W.O., Goldberg, M., and Chau-Wong, M., 1971b, The effects of ethanol and chlorpromazine on the passive membrane permeability to Na+, Biochim. Biophys. Acta 241: 349.

    Google Scholar 

  • Seeman, P., Chau, M., Goldberg, M., Sauks, T., and Sax, L., 1971c, The binding of Ca2+ to the cell membrane increased by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle, Biochim. Biophys. Acta 225:184.

    Google Scholar 

  • Segel, L. D., Rendig, S. V., and Mason, D. T., 1981, Alcohol-induced cardiac hemodynamic and Ca2+ flux dysfunctions are reversible, 1. Mol. Cell. Cardiol. 13:443.

    Google Scholar 

  • Shieh, D. D., Veda, I., Lin, H. c., and Eyring, H., 1976, Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2 dihexadecyl-sn-glycero-3-phosphorylcholine bilayer, Proc. Natl. Acad. Sci. USA 73:3999.

    Google Scholar 

  • Shinitzky, M., and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367.

    Google Scholar 

  • Shipley, G., 1973, Recent x-ray diffraction studies of biological membranes and membrane components, in: Biological Membranes Vol. 2 ( D. Chapman and D. F. H. Wallach, eds.), pp. 1–89, Academic Press, New York.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.

    Google Scholar 

  • Skou, J. C., 1958, Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve tissue lipoids, Biochim. Biophys. Acta. 30:625.

    Google Scholar 

  • Smith, R. A., Porter, E. G., and Miller, K. W., 1981, The solubility of anesthetic gases in lipid bilayers, Biochim. Biophys. Acta 645:327.

    Google Scholar 

  • Staiman, A., and Seeman, P., 1974, The impulse blocking concentrations of anesthetics, alcohols, anticonvulsants, barbiturates, and narcotics on phrenic and sciatic nerves, Can. 1. Physiol. Pharmacol. 52:535.

    Google Scholar 

  • Sun, A. Y., and Samorajski, T., 1970, Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea-pig brain, 1. Neurochem. 17:1365.

    Google Scholar 

  • Sun, A. Y. and Samorajski, T., 1975, The effects of age and alcohol on (Na+ -K+) ATPase activity of whole homogenate and synaptosomes prepared from mouse and human brain, J. Neurochem. 24:161.

    Google Scholar 

  • Sun, A. Y., and Seaman, R. N., 1980, Physicochemical approaches to the alcohol-membrane interaction in brain, Neurochem. Res. 5:537.

    Google Scholar 

  • Sun, G. Y., and Sun, A. Y., 1978, The effects of chronic ethanol administration on acyl group composition of mitochondrial phospholipids from guinea pig adrenal, Res. Comm. Chern. Path. Pharmacol. 21:355.

    Google Scholar 

  • Sunahara, G. I., and Kalant, H., 1980, Effect of ethanol on potassium-stimulated and electrically stimulated acetylcholine release in vitro from rat cortical slices, Can. J. Physiol. Pharmacol. 58: 706.

    Google Scholar 

  • Sutherland, V. c., Hine, C. H., and Burbridge, T. N., 1956, The effect of ethanol on cerebral cortex metabolism in vitro, J. Pharmacol. Exp. Ther. 116:469.

    Google Scholar 

  • Swartz, M. H., Repke, D. I., Katz, A. M., and Rubin, E., 1974, Effects of ethanol on calcium binding and calcium uptake by cardiac microsomes, Biochem. Pharmacol. 23:2369.

    Google Scholar 

  • Syapin, P. J., Tewari, S., and Noble, E. P., 1980, Effect of ethanol on neural cells grown in culture: Interaction with plasma membrane ecto-5' -nucleotidase activity, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 283 - 298, Plenum Press, New York.

    Google Scholar 

  • Tabakoff, B., and Hoffman, P. L., 1978, Alterations in receptors controlling dopamine synthesis after chronic ethanol ingestion, J. Neurochem. 31:1223.

    Google Scholar 

  • Tabakoff, B., and Hoffman, P. L., 1979, Development of functional dependence on ethanol in dopaminergic systems, J. Pharmacol. Exp. Ther. 208:216.

    Google Scholar 

  • Tabakoff, B., Hoffman, P. L., and Ritzman, R. F., 1978, Dopamine receptor function after chronic ingestion of ethanol, Life Sci. 23:643.

    Google Scholar 

  • Tanford, C., 1973, The Hydrophobic Effect, p. 43, Wiley, New York.

    Google Scholar 

  • Tardieu, A., Luzzati, V., and Reman, F. C., 1973, Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases, J. Molec. Bioi. 75:711.

    Google Scholar 

  • Taylor, M. G., and Smith, I. C. P., 1980, The fidelity of response by nitroxide spin probes to changes in membrane organization. The condensing effect of cholesterol, Biochim. Biophys. Acta 599:140.

    Google Scholar 

  • Taylor, M. G., and Smith, I. C. P., 1981, Reliability of nitro xi de spin probes in reporting membrane properties: A comparison of nitroxide- and deuterium-labeled steroids, Biochemistry, 20:5252.

    Google Scholar 

  • Thayer, W. S., and Rubin, E., 1979, Effects of chronic ethanol intoxication on oxidative phosphorylation in rat liver submitochondrial particles, J. Bioi. Chern. 254:7717.

    Google Scholar 

  • Thayer, W. S., Ohnishi, T., and Rubin, E., 1980, Characterization of iron-sulfur clusters in rat liver submitchondrial particles by electron paramagnetic resonance spectroscopy: Alterations produced by chronic ethanol consumption, Biochim. Biophys. Acta 591:22.

    Google Scholar 

  • Thurman, R. G., Harden, T. K., and Winn, K., 1980, Cyclic AMP and l3-adrenergic receptors during the development of physical dependence on ethanol in the rat, in: Biological Effects of Alcohol ( H. Begleiter, ed.), pp. 145 - 155, Plenum Press, New York.

    Google Scholar 

  • Ticku, M. K., 1980, The effects of acute and chronic ethanol administration and its withdrawal on 'Y-aminobutyric acid receptor binding in rat brain, Br. J. Pharmacol. 70:403.

    Google Scholar 

  • Ticku, M. K., and Burch, T., 1980, Alterations in ex-aminobutyric acid receptor sensitivity following acute and chronic ethanol treatments. J. Neurochem. 34:417.

    Google Scholar 

  • Ticku, M. K., and Davis, W. c., 1981, Evidence that ethanol and pentobarbital enhance [3H]diazepam binding at the benzodiazepine-GABA receptor-ionophore complex indirectly, Eur. J. Pharmacol. 71:521.

    Google Scholar 

  • Trauble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. USA 71:214.

    Google Scholar 

  • Trudell, J. R., Hubbell, W. L., and Cohen, E. N., 1973, The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles, Biochim. Biophys. Acta 291:321.

    Google Scholar 

  • Utsumi, H., Tunggal, B. D., and Stoffel, W., 1980, Carbon-13 nuclear magnetic resonance studies on the interaction of glycophorin with lecithin in reconstituted vesicles, Biochemistry 19: 2385.

    Google Scholar 

  • Van den Besselaar, A. M. H. P., De Kruijff, B., Van den Bosch, H., and Van Deneen, L. L. M., 1978, Phosphatidylcholine mobility in liver microsomal membranes, Biochim. Biophys. Acta 510: 242.

    Google Scholar 

  • Van Zoelen, E. J. J., Van Dijck, P. W. M., De Kruijff, B., Verkieig, A. J., and Van Deenen, L. L. M., 1978, Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers, Biochim. Biophys. Acta 514:9.

    Google Scholar 

  • Wallgren, H., 1971, Effect of ethanol on intracellular respiration and cerebral function, in: The Biology of Alcoholism Vol. I ( B. Kissin and H. Begleiter, eds.), pp. 103–125, Plenum Press, New York.

    Google Scholar 

  • Wallgren, H., and Kulonen, E., 1960, Effect of ethanol on respiration of rat-brain-cortex slices, Biochem. J. 75:150.

    Google Scholar 

  • Wallgren, H., Nikander, P., von Boguslawsky, P., and Linkola, J., 1974, Effects of ethanol, tert. butanol, and c1omethiazole on net movements of sodium and potassium in electrically stimulated cerebral tissue. Acta Physiol. Scand. 91:83.

    Google Scholar 

  • Waring, A. J., Rottenberg, H. Ohnishi, T., and Rubin, E., 1981, Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol, Proc. Natl. Acad. Sci. USA 78:2582.

    Google Scholar 

  • Williams, J. W., Tada, M., Katz, A. M., and Rubin, E., 1975, Effect of ethanol and acetaldehyde on the (Na + - K +)-activated adenosine triphosphatase activity of cardiac plasma membranes, Biochem. Pharmacol. 24:27.

    Google Scholar 

  • Wolosin, J. M., 1980, A procedure for membrane-protein reconstitution of the anion transport system of the human-erythrocyte membrane, Biochem. J. 189:35.

    Google Scholar 

  • Yokono, S., Shieh, D. D., and Ueda, I., 1981, Interfacial preference of anesthetic action upon the phase transition of phospholipid bilayers and partition equilibrium of inhalation anesthetics between membrane and deuterium oxide, Biochim. Biophys. Acta 645:237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Michaelis, E.K., Michaelis, M.L. (1983). Physico-Chemical Interactions between Alcohol and Biological Membranes. In: Research Advances in Alcohol and Drug Problems. Research Advances in Alcohol and Drug Problems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3626-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3626-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3628-0

  • Online ISBN: 978-1-4613-3626-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics