Advertisement

Formulation of the Relativistic N-Electron Problem

  • I. P. Grant
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 87)

Abstract

The first of my lectures examined relatively general features of the relativistic quantum mechanics of atoms in order to show that there is good evidence for taking relativistic effects seriously in atomic and molecular physics. It is therefore disturbing that the methods employed, both in the simple calculations described in the first lecture (and in high precision calculations reported elsewhere in this volume) have often been criticized as lacking proper foundations. In the past, the argument has often gone by default, those concerned being too deeply involved in calculations to devote much time to the tricky arguments needed, and it is now time to remedy the deficiency. Indeed, while the view-point is very different from that adopted elsewhere in this volume by Sucher, the final conclusions are not all that different.

Keywords

Dirac Operator Order Perturbation Theory Anticommutation Relation Transverse Photon High Precision Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Bethe and E.S. Salpeter, “Quantum mechanics of One- and Two-Electron Systems” [Handbuch der Physik, Vol XXXV, pp. 88–436], Berlin, Springer-Verlag (1957).Google Scholar
  2. 2.
    V.B. Berestetskii, E.M. Lifshitz and L.B. Pitaevskii, “Relativistic Quantum Theory” Parts 1 and 2. Pergamon Press, Oxford (1971 and 1974 ).Google Scholar
  3. 3.
    V.M. Burke and I.P. Grant, Proc. Phys. Soc. 90: 297 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    R.D. Richtmyer, “Principles of Advanced Mathematical Physics”, Vol. 1, Sec.10.17,11. 6 Springer-Verlag, New York (1978).MATHGoogle Scholar
  5. 5.
    J. Reinhardt and W. Greiner, Rep, Prog. Phys. 40: 219 (1977);J. Rafelski, L.P. Fulcher, A. Klein, Phys. Reports 38: 227 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    W. Hunziker, Commun Math. Phys. 40: 215 (1975); H. Kalf, U.-W. Schmincke, J. Walter and R. Wiist, Springer Lecture Notes in Mathematics, 448: 182 (1975). see also ref. 4.Google Scholar
  7. 7.
    P.A.M. Dirac, Proc. Roy. Soc. Lond. A126: 360 (1930).ADSMATHCrossRefGoogle Scholar
  8. 8.
    G.E. Breit, Phys. Rev. 34: 553 (1929); ibid, 36: 383 (1930); ibid, 39:616 (1932).ADSCrossRefGoogle Scholar
  9. 9.
    C.G. Darwin, Phil. Mag. 39: 537 (1920)Google Scholar
  10. 10.
    G.E. Brown and D.G. Ravenhall, Proc. Roy. Soc. Lond. A208: 552 (1951)Google Scholar
  11. 11.
    J.D. Bjφrken and S.D. Drell, “Relativistic Quantum Mechanics” McGraw Hill, New York (1964); S.S. Schweber, “An Introduction to Relativistic Quantum Field Theory”, Harper and Row, New York (1964); J.M. Jauch and F. Rohrlich, “Theory of photons and electrons” (2nd ed.) Springer-Verlag, New York (1976); and many other texts.Google Scholar
  12. 12.
    J. Sucher, Phys. Rev. A22: 348 (1980); and elsewhere in these proceedings.Google Scholar
  13. 13.
    M.H. Mittleman, Phys. Rev. A4: 893 (1971); ibid, A5, 2395 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    H.P. Kelly, Phys. Scripta 21: 448 (1980); and other references cited therein.ADSCrossRefGoogle Scholar
  15. 15.
    P.J. Möhr, these proceedings.Google Scholar
  16. 16.
    J.P. Desclaux, these proceedings.Google Scholar
  17. 17.
    B.R. Judd, “Second Quantization in Atomic Spectroscopy”,Baltimore, Johns Hopkins Press (1967).Google Scholar
  18. 18.
    I.P. Grant, these proceedings.Google Scholar
  19. 19.
    I.P. Grant, Adv. Phys. 19: 747 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    R.A. Krajcik and L.L. Foldy, Phys. Rev. D10: 1777 (1974);K. Sebastian and D. Yun, Phys. Rev. D19: 2509 (1979).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • I. P. Grant
    • 1
    • 2
  1. 1.Theoretical Chemistry DepartmentOxfordEngland
  2. 2.Instituto de FisicaUniversidad Nacional Autonoma de MexicoMexico, D.F.Mexico

Personalised recommendations