Relativistic Scattered-Wave Calculations for Molecules and Clusters in Solids

  • Cary Y. Yang
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 87)

Abstract

A brief review of the origin and development of the self- consistent field-Xα- Dirac-scattered-wave (SCF-Xα-DSW) molecular orbital method is presented. The DSW scheme is the fully relativistic counterpart of the SCF-Xα-SW method, which, in turn, is the molecular analog of the Korringa-Kohn-Rostoker energy band calculation technique. Since the SCF-Xα-SW method follows the same approximations as the nonrelativistic SW method, it suffers from the same severe limitations. However, it incorporates all relativistic effects within the one-electron local exchange framework, yielding four-component wave functions that transform according to the double point group of the given system. Selected DSW results are reviewed to illustrate chronologically the development of the method, and to demonstrate its strength as well as limitations. These examples include molecules I2 and UF6, small metal clusters and their use in modeling chemisorption, and cluster complexes of the quasi one-dimensional conductor KCP. They represent the classes of problems where SW calculations will continue to provide useful information. The method should be viewed as complementary to traditional quantum chemical approaches for those calculations where high quality ab initio computations are currently unfeasible.

Keywords

Nickel Platinum Catalysis Iodine Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Korringa, Physica 13: 392 (1947).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    W. Kohn and N. Rostoker, Phys. Rev. 94: 1111 (1954).ADSMATHCrossRefGoogle Scholar
  3. 3.
    J.C. Slater, Phys. Rev. 51: 846 (1937).ADSMATHCrossRefGoogle Scholar
  4. 4.
    J.M. Ziman, Proc. Phys. Soc.. (London) 86: 337 (1965).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. Lloyd, Proc. Phys. Soc. (London) 86: 825 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    J.C. Slater, Phys. Rev. 145: 599 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    K.H. Johnson, Phys. Rev. 150: 429 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Slater, J. Chem. Phys. 43: S228 (1965).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    K.H. Johnson, J. Chem. Phys. 45: 3085 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    K.H. Johnson, Adv. Quantum Chem. 7: 143 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    K.H. Johnson, Ann. Rev. Phys. Chem. 26: 39 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    K.H. Johnson, C.R.C. Critical Reviews in Solid State and Materials Science 7: 101 (1978).CrossRefGoogle Scholar
  13. 13.
    J.W.D. Connolly, p. 105, in: “Semiempirical Methods of Electronic Structure Calculation, Part A:Techniques,” G.A. Segal, ed., Plenum, New York (1977).Google Scholar
  14. 14.
    P. Weinberger, K. Schwarz, p. 257, in: “International Review of Science, Physical Chemistry, Series Two, Vol. 1, Theoretical Chemistry,” A.D. Buckingham, C.A. Coulson, eds.,Butterworth, London (1975).Google Scholar
  15. 15.
    N. Rösch, p. 1, in: “Elctrons in Finite and Infinite Structures,” P. Phariseau, L. Scheire, eds., Plenum, New York (1977).Google Scholar
  16. 16.
    R.P. Messmer, Surf. Sci. 106: 225 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Case, Ann. Rev. Phys. Chem. (1982), in press.Google Scholar
  18. 18.
    J.L. Dehmer, D. Dill, p. 225, in: “Electron-Molecule and Photon- Molecule Collisions,” T. Rescigno, V. McKoy, B. Schneider, eds., Plenum, New York (1979).Google Scholar
  19. 19.
    N.F. Lane, Rev. Mod. Phys. 52: 29 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    P. Pyykkö, Adv. Quantum Chem. 11: 353 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Onodera and M. Okazaki, J. Phys. Soc. Jpn. 21: 1273 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Choo, Ph.D. dissertation, M.I.T. (1975).Google Scholar
  23. 23.
    R.D. Cowan, D.C. Griffin, J. Opt. Soc. Am. 66: 1010 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    D.D. Koelling, B.N. Harmon, J. Phys. C: Solid St. Phys. 10: 3107 (1977).ADSCrossRefGoogle Scholar
  25. 25.
    W.V.M. Machado, L.G. Ferreira, Chem. Phys. Lett. 37: 51 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Wood, A.M. Boring, Phys. Rev. B18: 2701 (1978).ADSGoogle Scholar
  27. 27.
    A.M. Boring, J.H. Wood, J. Chem. Phys. 71: 32 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    A.M. Boring, J.H. Wood, J. Chem. Phys. 71: 392 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Onodera and M. Okazaki, J. Phys. Soc. Jpn. 21: 1273 (1966).ADSCrossRefGoogle Scholar
  30. 30.
    S. Takada, Prog. Theor. Phys. 36: 224 (1966).ADSCrossRefGoogle Scholar
  31. 31.
    C.Y. Yang and S. Rabii, Phys. Rev. A12: 362 (1975).ADSGoogle Scholar
  32. 32.
    B.G. Cartling and D.M. Whitmore, Int. J. Quantum Chem. 10: 393 (1976).CrossRefGoogle Scholar
  33. 33.
    F. Rosicky, P. Weinberger, and F. Mark, J. Phys. B 9: 2971 (1976)ADSGoogle Scholar
  34. 34.
    C.Y. Yang, J. Chem. Phys. 68: 2626 (1978).ADSCrossRefGoogle Scholar
  35. 35.
    C.Y. Yang, Ph.D. dissertation, University of Pennsylvania (1975)Google Scholar
  36. 36.
    C.Y. Yang, Chem. Phys. Lett. 41: 588 (1976).ADSCrossRefGoogle Scholar
  37. 37.
    C.Y. Yang and S. Rabii, Int. J. Quantum Chem. S10: 313 (1976).CrossRefGoogle Scholar
  38. 38.
    R.P. Messmer, D.R. Salahub, K.H. Johnson, and C.Y. Yang, Chem. Phys. Lett. 51: 84 (1977).ADSCrossRefGoogle Scholar
  39. 39.
    C.Y. Yang, K.H. Johnson, and J.A. Horsley, J. Chem. Phys. 68: 1001 (1978).ADSCrossRefGoogle Scholar
  40. 40.
    C.Y. Yang and S. Rabii, J. Chem. Phys. 69: 2497 (1978).ADSCrossRefGoogle Scholar
  41. 41.
    D.A. Case and C.Y. Yang, Int. J. Quantum Chem. 18: 1091 (1980).CrossRefGoogle Scholar
  42. 42.
    D.A. Case and C.Y. Yang, J. Chem. Phys. 72: 3443 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    C.Y. Yang, H.L. Yu, and D.A. Case, Chem. Phys. Lett, 81: 170 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    C.Y. Yang and D.A. Case, Surf. Sci. 106: 523 (1981).ADSCrossRefGoogle Scholar
  45. 45.
    C.Y. Yang,. in: “Proceedings of Electrocatalysis Symposium, Minneapolis, May 1981,” in press.Google Scholar
  46. 46.
    S. Rabii and C.Y. Yang, submitted to Chem. Phys. Lett. Google Scholar
  47. 47.
    J.C. Slater, Adv. Quantum Chem. 6: 1 (1972).ADSCrossRefGoogle Scholar
  48. 48.
    For a review of the background formalisms, see, for example, M.E. Rose, in: “Relativistic Electron Theory,” Wiley, New York (1961).Google Scholar
  49. 49.
    For a discussion of double groups, see, for example, E.P. Wigner, in: “Group Theory and its Applications to Quantum Mechanics of Atomic Spectra,” Academic, New York (1959).Google Scholar
  50. 50.
    J.B. Diamond, Chem. Phys. Lett. 20: 63 (1973).MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    G. Herzberg, in: “Molecular Spectra and Molecular Structure, Vol. 1. Spectra of Diatomic Molecules,” Van Nostrand, Princeton (1960).Google Scholar
  52. 52.
    R.S. Mulliken, J. Chem. Phys. 55: 288 (1971).ADSCrossRefGoogle Scholar
  53. 53.
    M.S. Nakhmanson, V.I. Baranovskii and Tu.M. Zaitsev, Teor. I Eksperim. Khim. 7; 240 (1971).Google Scholar
  54. 54.
    J.C. Slater, J.B. Mann, T.M. Wilson and J.H. Wood, Phys. Rev. 184: 672 (1969).ADSCrossRefGoogle Scholar
  55. 55.
    D.C. Frost, C.A. McDowell and D.A. Vroom, J. Chem. Phys. 46: 4255 (1967).ADSCrossRefGoogle Scholar
  56. 56.
    N. Rösch, W.G. Klemperer and K.H. Johnson, Chem. Phys. Lett. 23:149 (1973).ADSCrossRefGoogle Scholar
  57. 57.
    J.B. Danese, private communication.Google Scholar
  58. 58.
    E.J. Baerends and P. Ros, Chem. Phys. 8: 412 (1975).CrossRefGoogle Scholar
  59. 59.
    D.W. Turner, C. Baker, A.D. Baker and C.R. Brundle, in: “Molecular Photoelectron Spectroscopy,” Wiley-Interscience, New York (1970).Google Scholar
  60. 60.
    P.J. Hay, W.R. Wadt, L.R. Kahn, R.C. Raffenetti, and D.C. Phillips, J. Chem. Phys. 71: 1767 (1979).ADSCrossRefGoogle Scholar
  61. 61.
    D.D. Koelling, D.E. Ellis, and R.J. Bartlett, J. Chem. Phys. 65: 3331 (1976).ADSCrossRefGoogle Scholar
  62. 62.
    D.A.Case and M. Karplus, J. Am. Chem. Soc. 99: 6182 (1977).CrossRefGoogle Scholar
  63. 63.
    D.A. Case, B.H. Huynh, and M. Karplus, J. Am. Chem. Soc. 101: 4433 (1979), and references therein.CrossRefGoogle Scholar
  64. 64.
    R.P. Messmer, Vol. 8, Chapter 6, in: “Semiempirical Methods of Electronic Structure Calculations,” G.A. Segal, ed., Plenum, New York (1977).Google Scholar
  65. 65.
    G.A. Ozin, Catal. Rev. - Sci. Eng. 16: 191 (1977).CrossRefGoogle Scholar
  66. 66.
    H.L. Yu, J. Chem. Phys. 69: 1755 (1978).ADSCrossRefGoogle Scholar
  67. 67.
    A. Rosén, P. Grundevik, and T. Morovic, Surf. Sci. 95: 477 (1980)ADSCrossRefGoogle Scholar
  68. 68.
    A.Rosén, E.J. Baerends, and D.F. Ellis, Surf. Sci. 82: 139 (1979)ADSCrossRefGoogle Scholar
  69. 69.
    J.W. Davenport, Phys. Rev. Lett. 36:945 (1976); J. Vac. Sci. Tech. 15: 433 (1978).ADSCrossRefGoogle Scholar
  70. 70.
    F.W. Kutzler, C.R. Natoli, D.K. Misemer, S. Doniach, and K.O. Hodgson, J. Chem. Phys. 73: 3274 (1980).ADSCrossRefGoogle Scholar
  71. 71.
    F.W. Kutzler, R.A. Scott, J.M. Berg, K.O. Hodgson, S. Doniach, S.P. Cramer, and C.H. Chang, J.Am. Chem. Soc. 103: 6083 (1981).CrossRefGoogle Scholar
  72. 72.
    A.C. Balazs and K.H. Johnson, Surf. Sci. 114: 197 (1982).ADSCrossRefGoogle Scholar
  73. 73.
    C.Y. Yang and D.A Case, APS March Meeting, Dallas (1982).Google Scholar
  74. 74.
    G. Apai, P.S. Wehner, R.S. Williams, J. Stohr, and D.A. Shirley, Phys. Rev. Lett. 37: 1497 (1976).ADSCrossRefGoogle Scholar
  75. 75.
    P.R. Norton, J.W. Goodale, and E.B. Selkirk, Surf. Sci. 83: 189 (1979).ADSCrossRefGoogle Scholar
  76. 76.
    J.N. Miller, D.T. Ling, I. Lindau, P.M. Stefan, and W.E. Spicer, Phys. Rev. Lett. 38: 1419 (1977).ADSCrossRefGoogle Scholar
  77. 77.
    H.P. Bonzel and T.E. Fischer, Surf. Sci. 51: 213 (1975).ADSCrossRefGoogle Scholar
  78. 78.
    J.C. Slater, J.B. Mann, T.M. Wilson and J.T. Wood, Phys. Rev. 84: 672 (1969).ADSCrossRefGoogle Scholar
  79. 79.
    N. Rösch and D. Menzel, Chem. Phys. 13: 243 (1976).CrossRefGoogle Scholar
  80. 80.
    I.P. Batra and P.S. Bagus, Solid State Commun. 16: 1097 (1975).ADSCrossRefGoogle Scholar
  81. 81.
    K. Hermann and P.S. Bagus, Phys. Rev. B16: 4195 (1977).ADSCrossRefGoogle Scholar
  82. 82.
    J.S. Miller and A.J. Epstein, Progress in Inorg. Chem. 20: 1 (1976).CrossRefGoogle Scholar
  83. 83.
    J.M. Williams and A.J. Schultz, p. 337, in: “Molecular Metals,” W.E. Hatfield, ed., Plenum, New York (1979).Google Scholar
  84. 84.
    M. Whangbo and R. Hoffmann, J. Amer. Chem. Soc. 100: 6093 (1978).CrossRefGoogle Scholar
  85. 85.
    R.P. Messmer and D.R. Salahub, Phys. Rev. Lett. 35: 533 (1975).ADSCrossRefGoogle Scholar
  86. 86.
    L.V. Interrante and R.P. Messmer, Chem. Phys. Lett. 26:225 (1974); p.382, in: “Extended Interactions Between Metal Ions,” L.V. Interrante, ed., American Chemical Society Symposium Series No. 5, American Chemical Society, Washington, D.C. (1974).ADSCrossRefGoogle Scholar
  87. 87.
    A.K. Viswanath, M.B. Krogh-Jespersen, J. Vetuskey, C. Baber, W.D. Ellenson, and H.H. Patterson, Molecular Phys. 42: 1431 (1981).ADSCrossRefGoogle Scholar
  88. 88.
    R. Hoffmann, J. Chem. Phys. 39: 1397 (1963).ADSCrossRefGoogle Scholar
  89. 89.
    J.P. Lopez, C.Y. Yang, D.A. Case, APS March Meeting, Dallas (1982); manuscript in preparation.Google Scholar
  90. 90.
    U. Gelius, E. Basilier, S. Svensson, T. Bergmark, and K. Siegbahn, J. Electron Spec. 2: 405 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Cary Y. Yang
    • 1
  1. 1.Surface Analytic Research, Inc.Mountain ViewUSA

Personalised recommendations