Supported Catalysts for Polypropylene: Aluminum Alkyl-Ester Chemistry

  • Arthur W. Langer
  • Terry J. Burkhardt
  • John J. Steger
Part of the Polymer Science and Technology book series (POLS, volume 19)


The reactions of aluminum alkyl cocatalysts with the ethyl benzoate (EB) component of MgCl2 supported TiCl4 catalysts have a strong influence on both activity and stereospecificity. NMR investigations show that AlEt3 alkylates ethyl benzoate by the following reaction: PhCO2Et + 3 AlEt3 → 1/2 (Et2AlOEt)2 + Et3Al·Et2AlOCEt2Ph. The rate of ethyl benzoate consumption decreases with lower Al/PhCO2Et ratios. Atmospheric pressure polymerization studies reveal that the interaction of ethyl benzoate with the catalyst is responsible for achieving high isotacticity as measured by heptane insolubles (% HI). The aluminum alkoxide products from the alkylation reaction increase HI indirectly by complexing AlEt3, lowering the free [AlEt3] and the AlEt3/PhCO2Et ratio. However, lower free [AlEt3] also reduces polymerization rate. The introduction of steric bulk into the aluminum alkyl component minimizes the ester alkylation reaction while maintaining catalyst activity. Two types of cocatalysts have been found which give significantly better catalyst performance than the AlEt3 cocatalyst: (1) sterically hindered trialkyl aluminum cocatalysts, such as s-Bu2AlEt and t-Bu2AlEt and (2) certain aluminum dialkyl and diary1 amides such as Et2Al-2,2,6,6-tetramethylpiperidide and Et2AlNPh2.

Ethyl benzoate improves HI by inactivating the nonstereo- specific polymerization sites to a greater degree than the stereo- specific site. This has led to the finding that 2,2,6,6-tetra- methylpiperidine is highly selective in complexing the nonstereo- specific sites with minimal interaction toward stereospecific sites.


Polymerization Rate Lewis Base Alkylation Reaction Ethyl Benzoate OCH2 Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pino, R. Mulhaupt, Angew, Chem. Int. Ed. Engl. 19, 857 (1980).CrossRefGoogle Scholar
  2. 2.
    K. Ziegler, Belg. Pat. 533,362. K. Ziegler, E. Holzkamp, H. Breil, H. Martin, Angew, Chem. 67, 541 (1955).Google Scholar
  3. 3.
    G. Natta, J. Polymer Sci. 16, 143 (1955).CrossRefGoogle Scholar
  4. 4.
    E. Tornqvist, C. W. Seelbach, A. W. Langer, Jr., (Exxon), U.S. Pat. 3,128,252 (1964). E. Tornqvist, A. W. Langer, Jr., (Exxon), U.S. Pat. 3, 032, 510 (1962).Google Scholar
  5. 5.
    Brit. Pat. 895,595 (1962) (Hoechst). K. K. G. Rust, A. G. M. Gumboldt, K. F. Horndler, S. Sommer, E. Heitzer (Hoechst, assigned to Hercules), U.S. Pat. 3, 058, 970 (1962).Google Scholar
  6. 6.
    J. P. Hermans, P. Henrioulle (Solvay), DBP 2,213,086 (1972), U.S. Pat, 4,210,738 (1980) and 4,210, 735 (1980).Google Scholar
  7. 7.
    M. Yokoyama, A. Yamada, S. Okosi, T. Katou, S. Yoshida, (Mitsubishi Petrochem.), U.S. Pat, 4,151, 111 (1979).Google Scholar
  8. 8.
    H. Ueno, N. Inaba, T. Makishima, K. Watanabe, S. Wada (Exxon) U.S. Pat. 4, 182, 691 (1980).Google Scholar
  9. 9.
    E. Tornqvist, Ann. N.Y. Acad. Sci, 155, 447 (1969).Google Scholar
  10. 10.
    W. A. Hewett, E. C. Shokal (Shell), U.S. Pat, 3, 238, 146 (1966).Google Scholar
  11. 11.
    A. Mayr, P. Galli, E. Susa, G. DiDrusco, E. Cischetti (Montecatini), Brit. Pat. 1, 286, 867 (1969).Google Scholar
  12. 12.
    N. Kashiwa, T. Tokuzumi, O. Fujimura, H. Fujimura (Mitsui Petrochem.), U.S. Pat. 3,642, 746 (1972).Google Scholar
  13. 13.
    P. Longi, U. Giannini, A. Cassata (Montecatini), Brit. Pat. I, 335, 887 (1973).Google Scholar
  14. 14.
    T. Mole and E. A. Jeffrey, Organoaluminum Compounds, Elsevier Publishing Company (1972), p. 302.Google Scholar
  15. 15.
    E. C. Ashby, J. Laemmle, and H. M. Neumann, J. Amer. Chem. Soc., 90, 5179 (1968).CrossRefGoogle Scholar
  16. 16.
    E. G. Hoffmann, Ann. Chem. 629, 104 (1960).Google Scholar
  17. 17.
    J. Smidt, M. P. Groenewege and H. de Vries, Recueil 81, 729(1962)CrossRefGoogle Scholar
  18. 18.
    E. A Jeffrey and T. Mole, Aust. J. Chem. 23, 715 (1970).CrossRefGoogle Scholar
  19. 19.
    For reactions of Ali-Bu and AlEt with ethyl benzoate see also D. Adenhaim and J. L. Namy, Tet Letters, 3011 (1972).Google Scholar
  20. 20.
    Y. Baba, Bull. Chem. Soc., Japan 41, 1022 (1968).Google Scholar
  21. 21.
    S. Pasynkiewicz and E. Sliwa, J. Organometal. Chem. 3, 121(1965)Google Scholar
  22. 22.
    A. W. Langer, Jr., Ann. N.Y. Acad. Sci. 295, 110 (1977).CrossRefGoogle Scholar
  23. 23.
    A. W. Langer, T. J. Burkhardt, J. J. Steger, unpublished results.Google Scholar
  24. 24.
    T. Mole, Australian J. Chem. 19, 373 (1966); G. E. Coates and J. G. aham, J. Chem. Soc., 233 (1963).CrossRefGoogle Scholar
  25. 25.
    M. S. Newman, J. Amer. Chem. Soc. 63, 2431 (1941).CrossRefGoogle Scholar
  26. 26.
    C. L. Frye, G. A. Vincent, G. L. Hauschildt. J. Amer. Chem. Soc. 88, 2727 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Arthur W. Langer
    • 1
  • Terry J. Burkhardt
    • 1
  • John J. Steger
    • 1
  1. 1.Corporate Research LaboratoriesExxon Research and Engineering CompanyLindenUSA

Personalised recommendations