Advertisement

Neural Substrates of the Visual Perception of Movement

  • Mark A. Berkley
Part of the NATO Conference Series book series (NATOCS, volume 20)

Abstract

The purpose of this paper is to provide a brief summary of recent ideas and data regarding the neural substrates of the perception of motion. This summary is not comprehensive nor does it include the considerable relevant literature in human psychophysics. Several recent detailed and outstanding reviews are available also covering movement perception; in particular, the reviews by Grüsser and Grüsser-Cornellis (1975) and by Sekuler, Pantle and Levinson (1978) are notable. These reviews attempt to take into account the many physiological findings that may be relevant to motion perception. Several earlier, less physiological reviews are also available in basic reference texts and handbooks, e.g., Walls (1942), Johansson (1970), Graham (1963), etc., and the reader is referred to these for general background.

Keywords

Visual Cortex Receptive Field Visual Perception Superior Colliculus Lateral Geniculate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.V. and Symes, D., The superior colliculus and higher visual functions in the monkey. Brain Res., 1969, 13, 37–52.CrossRefGoogle Scholar
  2. Baker, J., Gibson, A., Glickstein, M. and Stein, J., Visual cells in the pontine nuclei of the cat. J. Physiol., 1976, 255, 415–434.Google Scholar
  3. Barlow, H.B. and Levick, W.R., The mechanism of directionally selective units in rabbit’s retina. J. Physiol., 1965, 178, 477–504.Google Scholar
  4. Baumgartner, G., Brown, J.L. and Schulz, A., Visual motion detection in the cat. Science, 1964, 146, 1070–1071.ADSCrossRefGoogle Scholar
  5. Berkley, M.A., The role of the geniculostriate system in vision. In F.A. King (ed.) Handbook of behavioral neurobiology. Vol. 1; Sensory Integration, R.G. Masterton, ed.. New York: Academic Press, 1976, 63–120.Google Scholar
  6. Berkley, M.A., Sherman, S.M., Warmath, D.S. and Tunkl, J.T., Visual capacities of adult cats which were reared with a lesion in the retina of one eye and the other occluded. Soc. Neurosci. Abstr., 1978a, 4, 467.Google Scholar
  7. Berkley, M.A. and Sprague, J., Behavioral analysis of the role of geniculocortical system in form vision. In: Cool., E. and Smit, E. (eds.). Frontiers in Visual Science. New York: Springer-Verlag, 1977, 220–239.Google Scholar
  8. Berkley, M.A. and Sprague, J.M., Striate cortex and visual acuity functions in the cat. J. Comp. Neurol., 1979, 187, 679–702.CrossRefGoogle Scholar
  9. Berkley, M.A., Warmath, D. and Tunkl, J.T., Movement discrimination capacities in the cat. J. Comp. Physiol. Psych., 1978b, 92, 463–473.CrossRefGoogle Scholar
  10. Beverley, K.I. and Regan, D., Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space. J. Physiol., 1973, 235, 17–29.Google Scholar
  11. Blakemore, C. and Campbell, F., On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol., 1969, 203, 237–260.Google Scholar
  12. Bridgeman, B., Visual receptive fields sensitive to absolute and relative motion during tracking. Science, 1972, 178, 1106–1108.ADSCrossRefGoogle Scholar
  13. Bridgeman, B., Receptive fields in single cells of monkey visual cortex during visual tracking. Intern. J. Neurosci., 1973a, 6, 141–152.CrossRefGoogle Scholar
  14. Bridgeman, B., Background activity in single cells of monkey visual cortex during visual tracking. Intern. J. Neurosci., 1973b, 5, 153–158.CrossRefGoogle Scholar
  15. Buchtel, H.A., Rubia, F.J. and Strata, P., Cerebellar unitary responses to moving visual stimuli. Brain Res., 1973, 50, 463–466.CrossRefGoogle Scholar
  16. Camisa, J., Blake, R. and Levinson, E., Visual movement perception in the cat is directionally selective. Exp. Brain Res., 1977, 29, 429–432.CrossRefGoogle Scholar
  17. Campbell, F.W. and Robson, J.G., Application of fourier analysis to the visibility of gratings. J. Physiol., 1968, 197, 551–565.Google Scholar
  18. Creutzfeld, O.D., Kuhnt, U. and Benevento, L.A., An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a cooperative neuronal network. Exp. Brain Res., 1974, 21, 251–274.Google Scholar
  19. Cynader, M., Berman, N. and Hein, A., Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus. Exp. Brain Res., 1975, 22, 267–280.CrossRefGoogle Scholar
  20. Cynader, M. and Chernenko, G., Abolition of direction selectivity in the visual cortex of the cat. Science, 1976, 193, 504–505.ADSCrossRefGoogle Scholar
  21. Cynader, M. and Regan, D., Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space. J. Physiol., 1978, 274, 549–569.Google Scholar
  22. Daw, N.W. and Wyatt, H.J., Raising rabbits in a moving visual environment: An attempt to modify directional sensitivity in the retina. J. Physiol., 1974, 240, 309–330.Google Scholar
  23. Daw, N.W. and Wyatt, H.J., Kittens reared in a unidirectional environment: Evidence for a critical period. J. Physiol., 1976, 257, 155–170.Google Scholar
  24. Denny-Brown, D. and Chambers, R.A., Physiological aspects of visual perception. I. Functional aspects of visual cortex. Arch. Neurology, 1976, 33, 219–227.Google Scholar
  25. Dews, P.B. and Wiesel, T.N., Consequences of monocular deprivation on visual behavior in kittens. J. Physiol., 1970, 206, 437–455.Google Scholar
  26. Enroth-Cugell, C. and Robson, J.G., The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol., 1966, 187, 517–552.Google Scholar
  27. Gibson, A., Baker, J., Mower, G. and Glickstein, M., Corticopontine cells in area 18 of the cat. J. Neurophysiol., 1978, 41, 484–495.Google Scholar
  28. Glickstein, M. and Gibson, A.R., Visual cells in the pons of the brain. Scientific American, 1976.Google Scholar
  29. Glickstein, M., King, R.A. and Stein, J.F., The visual input to neurones in n. pontis. J. Physiol., 1971, 218, 79 P.Google Scholar
  30. Glickstein, M., Stein, J. and King, R.A., Visual input to the pontine nuclei. Science, 1972, 178, 1110–1111.ADSCrossRefGoogle Scholar
  31. Goldberg, M.E. and Wurtz, R.H., Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol., 1972a, 35, 542–559.Google Scholar
  32. Goldberg, M.E. and Wurtz, R.H., Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol., 1972b, 35, 560–574.Google Scholar
  33. Graham, C. Perception of movement. In Graham, C. (ed.) Vision and Visual Perception., New York: Wiley, 1965, 574–588.Google Scholar
  34. Grüsser, O.J., Griisser-Cornellis, V., Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlates. In Jung, R. (ed.). Handbook of Sensory Physiology, VII/3, Part A. Springer Verlag, Berlin, 1973, 333–430.Google Scholar
  35. Guillery, R.W., Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. J. Comp. Neurol., 1967, 130, 197–222.CrossRefGoogle Scholar
  36. Hamilton, C.R. and Lund, J.S., Visual discrimination of movement: Midbrain or forebrain? Science, 1970, 170, 1428–1430.ADSCrossRefGoogle Scholar
  37. Hammond, P., Directional tuning of complex cells in area 17 of the feline visual cortex. J. Physiol., 1978, 285, 479–491.Google Scholar
  38. Hammond, P. and MacKay, D.M., Response of cat visual cortical cells to kinetic contours and static noise. J. Physiol., 1975, 252, 43 P.Google Scholar
  39. Hammond, P. and MacKay, D.M., Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp. Brain Res., 1977, 30, 275–296.CrossRefGoogle Scholar
  40. Hammond, P. and MacKay, D.M., Modulation of simple cell activity in cat by moving textured backgrounds. J. Physiol., 1978, 284, 117 P.Google Scholar
  41. Held, R., IV. Dissociation of visual functions by deprivation and rearrangement. Psychologische Forschung, 1967–68, 31, 338–348.Google Scholar
  42. Hess, R. and Wolters, W., Responses of single cells in cat’s lateral geniculate nucleus and area 17 to the velocity of moving visual stimuli. Exp. Brain Res., 1979, 34, 273–286.CrossRefGoogle Scholar
  43. Heywood, S. and Ratcliff, G., Long-term oculomotor consequences of unilateral colliculectomy in man. In Lennestrand, G., and Bach-y-Rita, P., Basic Mechanisms of Ocular Motility and New Chemical Implications, Pergommon Press, 1975.Google Scholar
  44. Höllander, H., Autoradiographic evidence for a projection from the striate cortex to the dorsal part of the lateral geniculate nucleus in the cat. Brain Res., 1972, 41, 464–466.CrossRefGoogle Scholar
  45. Hubel, D.H. and Wiesel, T.N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 1962, 160, 106–154.Google Scholar
  46. Humphrey, N.K. and Weiskrantz, L., Vision in monkeys after removal of the striate cortex. Nature, 1967, 215, 595–597.ADSCrossRefGoogle Scholar
  47. Johansson, G., Visual event perception. In Held, R., Leibowitz, H., and Teuber, H.-L. (eds.) Handbook of Sensory Physiology; Vol. VIII. Perception. Springer–Verlag; New York, 1978, 675–712.Google Scholar
  48. Jones, K.R., Berkley, M.A., Spear, P. and Tong, J., Visual capacities of monocularly deprived cats after reverse lid suture and enucleation of the non-deprived eye. Soc. Neurosci. Abstr., 1978, 4, 475.Google Scholar
  49. Kawamura, S., Sprague, J.M. and Niimi, K., Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J. Comp. Neurol., 1974, 158, 339–362.CrossRefGoogle Scholar
  50. Kennedy, J.L., The nature and physiological basis of visual movement discrimination in animals. Psychol. Rev., 1936, 43, 494–521.CrossRefGoogle Scholar
  51. Kennedy, J.L., The effect of complete and partial bilateral extirpation of the area striata on visual movement discrimination in the cat. Psychol. Bull., 1936, 33, 754.Google Scholar
  52. Kennedy, J.L., The effects of complete and partial occipital lobectomy upon thresholds of visual real movement discrimination in the cat. J. Genetic Psychol., 1939, 54, 119–149.Google Scholar
  53. Kennedy, J.L. and Smith, K.U., Visual thresholds of real movement in the cat. J. Genetic Psychol., 1935, 46, 470–476.Google Scholar
  54. Koerner, F. and Teuber, H.-L., Visual field defacts after missile injuries to the geniculostriate pathway in man. Exp. Brain Res., 1973, 18, 88–113.CrossRefGoogle Scholar
  55. Kozak, W., Rodieck, R.W. and Bishop, P.O., Responses of single units in lateral geniculate nucleus of cat to moving visual patterns. J. Neurophysiol., 1965, 28, 19–47.Google Scholar
  56. Lange, H., de. Relationship between critical flicker-frequency and a set of low-frequency characteristics of the eye. J. Opt. Soc. Amer., 1954, 44, 380–389.ADSCrossRefGoogle Scholar
  57. Lehmkuhle, S., Kratz, K.E., Mangel, S.C. and Sherman, S.M., Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol., 1980, 43, 2, 520–541.Google Scholar
  58. Lennie, P., Parallel visual pathways: A review. Vision Res., 1980, 20, 561–594.CrossRefGoogle Scholar
  59. Levick, W.R., Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J. Physiol., 1967, 188, 285.Google Scholar
  60. Levick, W.R., Oyster, C.W. and Takahashi, E., Rabbit lateral geniculate nucleus: Sharpener of directional information. Science, 1969, 165, 712–714.ADSCrossRefGoogle Scholar
  61. Maffei, L., Fiorentini, A. and Bisti, S., Neural correlate of perceptual adaptation to gratings. Science, 1973, 182, 1036–1038.ADSCrossRefGoogle Scholar
  62. Mays, L.E. and Sparks, D.L., Dissociation of visual and saccade-related responses in superior colliculus neurons, J. Neurophysiol., 1980, 43, 207–232.Google Scholar
  63. Meyers, B. and McCleary, R.A., Interocular transfer of a pattern discrimination in pattern deprived cats. J. Comp. Physiol. Psychol., 1964, 57, 16–21.CrossRefGoogle Scholar
  64. Montero, V.M. and Brugge, J.F., Direction of movement as the significant stimulus parameter for some lateral geniculate cells in the rat. Vision Res., 1969, 9, 71–88.CrossRefGoogle Scholar
  65. Monty, R.A. and Senders, J.W. (eds.) Eye Movements and Psychological Processes., Lawrence Erlbaum Assoc., Publishers, 1976.Google Scholar
  66. Movshon, J.A., Velocity preferences of simple and complex cells in the cat’s striate cortex. J. Physiol., 1974, 242, 121–123.Google Scholar
  67. Movshon, J.A., The velocity tuning of single units in cat striate cortex. J. Physiol., 1975, 249, 445–468.Google Scholar
  68. Orban, G.A. and Callens, M., Influence of movement parameters on area 18 neurones in the cat. Exp. Brain Res., 1977, 30, 125–140.Google Scholar
  69. Orban, G.A., Kennedy, H., Maes, H. and Amblard, B., Cats reared in stroboscopic illumination: Velocity characteristics of area 18 neurons. Arch. Ital. Biol., 1978, 11b, 413–419.Google Scholar
  70. Pasternak, T. and Merigan, W.H., Abnormal visual resolution of cats reared in stroboscopic illumination. Nature, 1979, 280, 313–314.ADSCrossRefGoogle Scholar
  71. Pasternak, T., Movshon, J.A. and Merigan, W.H., Motion mechanisms in strobe reared cats: Psychophysical and electrophysiological measures. Acta Psychologica, 1981, 48, 321–331. Special Issue on the Perception of Motion.Google Scholar
  72. Peck, C.K., Crewther, S.G. and Hamilton, C.R., Partial interocular transfer of brightness and movement discrimination by split-brain cats. Brain Res., 1979, 163, 61–75.CrossRefGoogle Scholar
  73. Pettigrew, J.D., Nikara, T. and Bishop, P.O., Responses to moving slits by single units in cat striate cortex. Exp. Brain Res., 1968, 6, 373–390.Google Scholar
  74. Pöppel, E., Held, R. and Frost, D., Residual visual function after brain wounds involving the central visual pathways in man. Nature, 1973, 243, 295–296.ADSCrossRefGoogle Scholar
  75. Regan, D. and Beverley, K.I., Visual guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science, 1979, 205, 311–313.ADSCrossRefGoogle Scholar
  76. Regan, D. and Cynader, M., Neurons in area 18 of cat visual cortex selectively sensitive to changing size: Nonlinear interactions between responses to two edges. Vision Res., 1979, 19, 699–711.CrossRefGoogle Scholar
  77. Richards, W., Motion detection in man and other animals. Brain, Behav., and Evol., 1971, 4, 162–181.MathSciNetCrossRefGoogle Scholar
  78. Richards, W. and Smith, R.A., Midbrain as a site for the motion after-effect. Nature, 1969, 223, 533–534.ADSCrossRefGoogle Scholar
  79. Riddoch, G., Dissociation of visual perceptions due to occipital injuries, with special reference to appreciation of movement. Brain, 1917, 40, 15–57.CrossRefGoogle Scholar
  80. Riesen, A.H. and Aarons, L., Visual movement and intensity discrimination in cats after early deprivation of pattern vision. J. Comp. Physiol. Psychol., 1959, 52, 142–149.CrossRefGoogle Scholar
  81. Robinson, D.L. and Jarvis, C.D., Superior colliculus neurons studied during head and eye movements of the behaving monkey. J. Neuropbysiol., 1974, 37, 533–540.Google Scholar
  82. Robinson, D.L. and Wurtz, R.H., Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. J. Neuropbysiol., 1975, 39, 852–870.Google Scholar
  83. Rodieck, R.W., The Vertebrate Retina. Principles of Structure and Function. W.H. Freeman and Company, San Francisco, 1973.Google Scholar
  84. Rodieck, R.W. and Stone, J., Response of cat retinal ganglion cells to moving visual patterns. J. Neuropbysiol., 1965, 28, 819–832.Google Scholar
  85. Rowe, M.H. and Stone, J., Naming of neurones: Classification and naming of cat retinal ganglion cells.. Brain, Behav. Evol., 1977, 14, 185–216.CrossRefGoogle Scholar
  86. Schiller, P.H. and Koerner, F., Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neuropbysiol., 1971, 34, 920–936.Google Scholar
  87. Schiller, P.H., Stryker, M., Cynader, M. and Berman, N., Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J. Neuropbysiol., 1974, 37, 181–194.Google Scholar
  88. Schiller, P.H., True, S.D. and Conway, J.L., Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 1979, 206, 590–592.ADSCrossRefGoogle Scholar
  89. Sekuler, R., Pantle, A. and Levinson, E., Physiological basis of motion perception. In Held, R., Leibowitz, H.W., and Teuber, H.-L. (eds.) Handbook of Sensory Physiology, VIII, Springer Verlag, Berlin, 1978, 67–96.Google Scholar
  90. Singer, W. and Bedworth, N., Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res., 1973, 49, 291–307.CrossRefGoogle Scholar
  91. Singer, W. and Bedworth, N., Correlation between the effects of brain stem stimulation and saccadic eye movements on transmission in the cat lateral geniculate nucleus. Brain Res. 1978, 72, 185–202.CrossRefGoogle Scholar
  92. Smith, K.U., Experiments on the neural basis of movement vision. J. Exp. Psychol., 1941, 28, 199–216.CrossRefGoogle Scholar
  93. Sterling, P. and Wickelgren, B.G., Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol., 1969, 32, 1.Google Scholar
  94. Sterling, P. and Wickelgren, B.G., Function of the projection from the visual cortex to the superior colliculus. Brain Behav. Evol., 1970, 2, 210–218.CrossRefGoogle Scholar
  95. Stone, J. and Dreher, B., Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol., 1973, 36, 551–567.Google Scholar
  96. Sutherland, N., Figural aftereffects and apparent size. Quart. J. Exp. Psych., 1961, 13, 222–228.CrossRefGoogle Scholar
  97. Tretter, F., Cynader, M. and Singer, W., Modification of direction selectivity of neurons in the visual cortex of kittens. Brain Res., 1975, 84, 143–149.CrossRefGoogle Scholar
  98. Vautin, R.G. and Berkley, M.A., Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects. J. Neurophysiol., 1977, 40, 1051–1065.Google Scholar
  99. Vital-Durand, F. and Jeannerod, M., Role of visual experience in the development of optokinetic response in kittens. Exp. Brain Res., 1974, 20, 297–302.CrossRefGoogle Scholar
  100. Walls, G.L., The Vertebrate Eye. Cranbrook Institute Press, Bloomfield Hills, 1942.Google Scholar
  101. Weiskrantz, L., Warrington, E.K., Sanders, M.D. and Marshall, J., Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 1974, 97, 709–728.CrossRefGoogle Scholar
  102. Wickelgren, B.A. and Sterling, P., Influence of visual cortex on receptive fields in the superior colliculus of the cat. J. Neurophysiol., 1969, 32, 16.Google Scholar
  103. Wiesel, T.N. and Hubel, D.H., Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol., 1963, 26, 1003–1017.Google Scholar
  104. Wiesel, T. and Hubel, D.H., Comparison of the effects of unilateral and bilateral eye closure on cortical unity responses in kittens. J. Neurophysiol., 1965, 28, 1029–1040.Google Scholar
  105. Wurtz, R.H., Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol., 1969, 32, 978–994.Google Scholar
  106. Wyatt, H.J. and Daw, N.W., Directionally sensitive ganglion cells in the rabbit retina: Specificity for stimulus direction, size, and speed. J. Neurophysiol., 1975, 38, 613–626.Google Scholar
  107. Zeki, S.M., Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol., 1974a, 236, 549–573.Google Scholar
  108. Zeki, S.M., Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J. Physiol., 1974b, 242, 827–841.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Mark A. Berkley
    • 1
  1. 1.Department of PsychologyFlorida State UniversityTalahasseeUSA

Personalised recommendations