Strain Tolerances in Nb3Sn Conductors

  • T. Luhman
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 28)


Knowledge of strain related effects in Nb3Sn conductors has improved in recent years.1, 2 Early critical current — strain measurements showed variations in strain tolerances among conductors and even for individual ones after different reaction heat treatments. It was soon recognized that relative thermal contractions of the constituent materials in conductors combined to place a residual compressive strain on the Nb3Sn compound. Other work demonstrated that whenever Nb3Sn was strained in compression or tension, the critical current, Ic, decreased. Strain-induced critical current changes are now commonly interpreted as consequences of changes in the internal strain state of a conductor and variations from one conductor to another are attributed to differences in individual residual strain states.


Critical Current Residual Strain Strain Tolerance Intrinsic Strain Bronze Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For reviews see “Filamentary A15 Superconductors,” M. Suenaga and A. F. Clark, eds., Plenum Press, New York (1980).Google Scholar
  2. 2.
    J. W. Ekin, Mechanical properties and strain effects in superconductors, in: “Superconductor Materials Science,” S. Foner and B. B. Schwartz, eds., Plenum Press (1981), p. 455.Google Scholar
  3. 3.
    G. Rupp, IEEE Trans. Magn. MAG-13: 1565 (1977).CrossRefGoogle Scholar
  4. 4.
    G. Rupp, J. Appl. Phys. 48: 3858 (1977).CrossRefGoogle Scholar
  5. 5.
    T. Luhman, M. Suenaga, D. O. Welch, and K. Kaiho, IEEE Trans. Magn. MAG-15: 699 (1977).Google Scholar
  6. 6.
    C. L. Snead, Jr. and M. Suenaga, Appl. Phys. Lett. 37: 659 (1980).CrossRefGoogle Scholar
  7. 7.
    D. O. Welch, in: “Advances in Cryogenic Engineering--Materials,” Vol. 26, Plenum Press, New York (1980), p. 48.Google Scholar
  8. 8.
    M. Suenaga, T. Onishi, D. O. Welch, and T. S. Luhman, Bull. Am. Phys. Soc. 23: 229 (1978).Google Scholar
  9. 9.
    E. J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  10. 10.
    G. Rupp, IEEE Trans. Magn. MAG-15: 189 (1979).CrossRefGoogle Scholar
  11. 11.
    T. Luhman, D. O. Welch, and M. Suenaga, IEEE Trans. Magn. MAG-17: 662 (1981).CrossRefGoogle Scholar
  12. 12.
    J. W. Ekin, H. Sekine, and K. Tachikawa, J. Appl. Phys. 52: 6252 (1981).CrossRefGoogle Scholar
  13. 13.
    A. Asner, C. Becquet, D. Hagedorn, C. Nigueletto, and W. Thomi, IEEE Trans. Magn. MAG-17: 416 (1981).CrossRefGoogle Scholar
  14. 14.
    K. Ishibashi, M. Koizumi, K. Hosoyama, M. Kobayashi, and T. Horigami, IEEE Trans. Magn. MAG-17: 468 (1981).Google Scholar
  15. 15.
    K. J. Best and B. Rothe, IEEE Trans. Magn. MAG-17: 478 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • T. Luhman
    • 1
  1. 1.Department of Energy and EnvironmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations