Advertisement

Discontinuous Deformation Modes of a Nitrogen-Stabilized Austenitic Steel

  • B. Obst
  • D. Pattanayak
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 28)

Abstract

The instability of plastic flow at low temperatures appears to be quite a general phenomenon of many metallic materials. Several theories have been advanced to account for this effect: strain-induced phase transformations1 and twins,2 avalanche-like barrier crossing by dislocation pile-ups and their sudden multiplication under the action of the load,3 and thermal instability of deformation resulting from a large temperature dependence of the flow stress coupled with low specific heat.4–6 This last “thermal model” is commonly given as the cause for discontinuous yielding. However, the detailed mechanism has not been definitely explained. Particularly, the considerable localized plastic flow that must have occurred before the temperature rises7 can by no means be ruled out, and the available experimental results are quite contradictory.

Keywords

Deformation Band Load Drop Martensite Volume Fraction Jerky Flow Load Ce11 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Uzhik, Izvest. Akad. Nauk SSSR, Otdel. Tek. Nauk 1: 57 (1955).Google Scholar
  2. 2.
    T. H. Blewitt, R. R. Coltman, and J. K. Redman, “Defects in Crystalline Solids,” Phys. Soc., London (1955).Google Scholar
  3. 3.
    A. Seeger, “Dislocations and Mechanical Properties of Crystals,” Wiley, New York (1957).Google Scholar
  4. 4.
    Z. S. Basinski, Proc. Roy. Soc. A240: 229 (1957).CrossRefGoogle Scholar
  5. 5.
    Z. S. Basinski, Aust. J. Phys 13: 354 (1960).CrossRefGoogle Scholar
  6. 6.
    E. T. Wessel, Trans. Am. Soc. Met. 49: 149 (1957).Google Scholar
  7. 7.
    P. Haasen, Trans. AIME 212: 42 (1958).Google Scholar
  8. 8.
    D. C. Larbalestier and H. W. King, Cryogenics 13: 160 (1973).CrossRefGoogle Scholar
  9. 9.
    R. P. Reed, Acta Metall. 10: 865 (1962).CrossRefGoogle Scholar
  10. 10.
    J. A. Venables, Philos. Mag. 7: 35 (1962).CrossRefGoogle Scholar
  11. 11.
    F. Lecroisey and A. Pineau, Metall. Trans. 3: 387 (1972).CrossRefGoogle Scholar
  12. 12.
    G. B. Olson and M. Cohen, J. Less-Common Met. 28: 107 (1972).CrossRefGoogle Scholar
  13. 13.
    R. Lagneborg, Acta. Metall. 12: 823 (1964).CrossRefGoogle Scholar
  14. 14.
    T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and Ichihara. Acta. Metall. 25: 1151 (1977).CrossRefGoogle Scholar
  15. 15.
    G. B. Olson and M. Azrin, Metall. Trans. 9A: 713 (1978).CrossRefGoogle Scholar
  16. 16.
    J. W. Brooks, M. H. Loretto, and R. E. Smallman, Acta. Metall. 27: 1829 (1979).CrossRefGoogle Scholar
  17. 17.
    A. Sato, H. Kasuga, and T. Mori, Acta. Metall. 28: 1223 (1980).CrossRefGoogle Scholar
  18. 18.
    A. J. Bogers and W. G. Burgers, Acta. Metall. 12: 225 (1964).Google Scholar
  19. 19.
    W. G. Burgers and J. A. Klosterman, Acta. Metall. 13: 1005 (1970).Google Scholar
  20. 20.
    N. Niikura, M. Yamada, J. Tanaka, and H. Ichinose, in: “New Aspects of Martensitic Transformation,” Proc. JIMIS-1, Kobe (May 10–12, 1976 ), p. 321.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • B. Obst
    • 1
  • D. Pattanayak
    • 1
  1. 1.Institut für Technische PhysikKernforschungszentrum KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations