Continuous High Temperature Gradient Solidification Of In Situ Cu-Nb Alloys For Large-Scale Development

  • H. LeHuy
  • J. L. Fihey
  • R. Roberge
  • S. Foner
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 28)


The in situ technique for preparing multiply connected Nb3Sn (V3Ga) superconducting wires consists of melting and casting a Cu-Nb (V) alloy, mechanically deforming the casting into wires, and finally reacting the Nb (V) filaments into Nb3Sn (V3Ga) by diffusing Sn (Ga). For its relative simplicity, but also for the improved mechanical properties of the resulting composites, the in situ process is a promising alternative to the bronze process. Several groups are evaluating various scale-up approaches1–6 (see also other papers in this volume). We had developed an arrangement for high temperature gradient solidification of small diameter rods.4–5 The choice of a relatively small diameter had the advantages of:
  • low power and inexpensive equipment

  • good dispersion of the Nb along the rod

  • control of the form and the size of the Nb dendrites.


Critical Current Density Graphite Tube Increase Heat Treatment Temperature Dendrite Size Inexpensive Equipment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Verhoeven, F. A. Schmidt, E. D. Gibson, J. E. Ostenson, and D. K. Finnemore, Appl. Phys. Lett. 35:555 (1979).CrossRefGoogle Scholar
  2. 2.
    J. D. Verhoeven, E. D. Gibson, F. A. Schmidt, and D. K. Finnemore, J. Mater. Sci. 15:1449 (1980).CrossRefGoogle Scholar
  3. 3.
    K. Togano, H. Kumakura, and K. Tachikawa, IEEE Trans. Magn. MAG-17:985 (1981).CrossRefGoogle Scholar
  4. 4.
    J. L. Fihey, M. Neff, R. Roberge, M. C. Flemings, S. Foner, and B. B. Schwartz, High-temperature-gradient casting of in situ multifilamentary superconductors, in: “Advances in Cryogenic Engineering,” Vol. 26, Plenum Press, New York (1980), p. 343.Google Scholar
  5. 5.
    J. L. Fihey, M. Neff, R. Roberge, M. C. Flemings, S. Foner, and B. B. Schwartz, Appl. Phys. Lett. 35:715 (1979).CrossRefGoogle Scholar
  6. 6.
    C. R. Spencer, E. Adam, E. Gregory, W. Marancik, and C. Z. Rosen, IEEE Trans. Magn. MAG-17:257 (1981).CrossRefGoogle Scholar
  7. 7.
    W. F. Hosford, Jr., Trans. AIME 230: 12 (1964).Google Scholar
  8. 8.
    J. P. Harbison and J. Bevk, J. Appl. Phys. 48:5180 (1977).CrossRefGoogle Scholar
  9. 9.
    J. D. Verhoeven, J. J. Sue, D. K. Finnemore, E. D. Gibson, and J. E. Ostenson, J. Mater. Sci. 15:1907 (1980).Google Scholar
  10. 10.
    H. LeHuy, R. Roberge, J. L. Fihey, G. Rupp, and S. Foner, IEEE Trans. Magn. MAG-17:261 (1981).Google Scholar
  11. 11.
    M. Suenaga and W. B. Sampson, Appl. Phys. Lett. 20:443 (1972).Google Scholar
  12. 12.
    I. L. McDougall, LT-15, J. Phys. (Paris), Colloque C 6 39: 402 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • H. LeHuy
    • 1
    • 4
  • J. L. Fihey
    • 1
  • R. Roberge
    • 1
  • S. Foner
    • 2
    • 3
  1. 1.IREQ, Institut de Recherche d’Hydro-QuébecVarennesCanada
  2. 2.Francis Bitter National Magnet LaboratoryCambridgeUSA
  3. 3.Plasma Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.IGM, Conseil National de RecherchesCanada

Personalised recommendations