Skip to main content

Effects of Ternary Additions on Young’s Modulus and the Martensitic Transformation of Nb3Sn

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 28))

Abstract

Recent measurements on bronze-processed Nb3Sn using a vibrating reed technique have shown that Young’s modulus at low temperatures decreases to 0.4 of its room temperature value and that internal friction increases dramatically below 50 K, the martensitic transformation temperature.1 In the present paper, this technique was used to study softening and the occurrence of the martensitic transformation in bronze-processed Nb3Sn containing ternary additions. The additions studied were Ta and Ti, which are known to cause substantial improvements of critical current density at high fields,2–4 and Zr, which improves the growth kinetics of bronze-processed Nb3Sn.5 The additions were added to the Nb core and are believed to occupy Nb sites in the A15 lattice. Results show that ternary additions to Nb3Sn can affect both its structure by suppressing the martensitic transformation and the state of stress, when included in a matrix, by causing large changes in Young’s modulus at low temperatures. Both of these effects are of technological interest since the upper critical field, Hc2, and critical temperature depend on whether Nb3Sn is cubic or tetragonal6, 7 and, in the case of composite conductors, on the combined strain resulting from the compression due to the matrix and externally applied stress.8, 9

Work supported in part by the U.S. DoE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Bussière, B. Faucher, C. L. Snead, Jr., and D. O. Welch, Phys. Rev. B. (in press).

    Google Scholar 

  2. J. D. Livingston, IEEE Trans. Magn. MAG-14: 611 (1978).

    Article  CAS  Google Scholar 

  3. M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luhman, in: “Advances in Cryogenic Engineering,” Vol. 25, Plenum Press, New York (1980), p. 442.

    Google Scholar 

  4. M. Suenaga, S. Okuda, K. Itoh, and T. S. Luhman, Superconducting properties of (Nb,Ti)3Sn wires fabricated by the bronze process, in “Advances in Cryogenic EngineeringHHHMaterials,” Vol. 28, Plenum Press, New York (1982), p. 379.

    Google Scholar 

  5. M. Suenaga, T. S. Luhman, and W. B. Sampson, J. Appl. Phys. 45: 4049 (1974).

    Article  CAS  Google Scholar 

  6. S. Foner and E. J. McNiff, Jr., Phys. Lett. A 58: 318 (1976).

    Article  Google Scholar 

  7. C. W. Chu and L. J. Vieland, J. Low. Temp. Phys. 17: 25 (1974).

    Article  CAS  Google Scholar 

  8. T. S. Luhman, Metallurgy of superconducting materials, in: “Treatise on Materials Science and Technology,” Academic Press, New York (1979), p. 221.

    Google Scholar 

  9. G. Rupp, IEEE Trans. Magn. MAG-17: 1099 (1981).

    Google Scholar 

  10. J. F. Bussiere, D. O. Welch, and M. Suenaga, J. Appl. Phys. 51: 1024 (1980).

    Article  CAS  Google Scholar 

  11. Y. V. Efimov, B. P. Mikhaylov, and E. Moroz, Russ. Metall. Min. 5: 168 (1979).

    Google Scholar 

  12. H. Simpson and A. Sosin, Rev. Sci. Instrum. 48: 1392 (1977).

    Article  Google Scholar 

  13. M. Weger and I. B. Goldberg, in: “Solid State Physics,” Vol. 28, F. Steiz and D. Turnbull, eds., Academic Press, New York (1978), p. 1.

    Google Scholar 

  14. L. R. Testardi, in: “Physical Acoustics,” Vol. X, W. P. Mason and R. N. Thurston, eds., Academic Press, New York (1973), p. 193.

    Google Scholar 

  15. L. R. Testardi, in: “Physical Acoustics,” Vol.. XIII, W. P. Mason and R. N. Thurston, eds., Academic Press, New York (1977), p. 29.

    Google Scholar 

  16. A. Guha, M. Sarachik and F. W. Smith, Phys. Rev. B 18: 9 (1978)

    Article  CAS  Google Scholar 

  17. R. Roberge, H. LeHuy, and S. Foner, Phys. Lett.

    Google Scholar 

  18. L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A: 43 (1971). 460

    Google Scholar 

  19. J. J. Vieland, J. Phys. Chem. Solids 31: 1449 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Bussière, J.F., Faucher, B., Snead, C.L., Suenaga, M. (1982). Effects of Ternary Additions on Young’s Modulus and the Martensitic Transformation of Nb3Sn. In: Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3542-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3542-9_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3544-3

  • Online ISBN: 978-1-4613-3542-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics