Advertisement

Effects of the IVa Element Additions on Composite-Processed Nb3Sn

  • K. Tachikawa
  • T. Takeuchi
  • T. Asano
  • Y. Iijima
  • H. Sekine
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 28)

Abstract

Composite-processed multifilamentary Nb3Sn conductors are being developed for high-field applications, such as fusion reactor magnets. However, the improvement of critical current density, Jc, of the composite-processed Nb3Sn in high magnetic fields is required since the Jc decreases rapidly in fields above 12 T. Therefore, numerous studies have been made aiming at the improvement of Jc in high fields of the composite-processed Nb3Sn through alloying additions to the niobium core, or to the matrix, or to both.1–9

Keywords

Simultaneous Addition Titanium Concentration Composite Wire Titanium Addition Nb3Sn Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Suenaga, T. S. Luhman, and W. B. Sampson, J. Appl. Phys. 45: 4049 (1974).CrossRefGoogle Scholar
  2. 2.
    O. Horigami, T. S. Luhman, C. S. Pande, and M. Suenaga, Appl. Phys. Lett. 27: 738 (1976).CrossRefGoogle Scholar
  3. 3.
    D. Dew-Hughes, IEEE Trans. Magn. MAG-13: 651 (1977).CrossRefGoogle Scholar
  4. 4.
    K. Togano, T. Asano, and K. Tachikawa, J. Less-Common Met. 68: 15 (1979).CrossRefGoogle Scholar
  5. 5.
    M. Suenaga, K. Aihara, K. Kaiho, and T. S. Luhman, Superconducting properties of (Nb,Ta)3Sn wires fabricated by the bronze process, in: “Advances in Cryogenic Engineering - Materials, Vol. 26,”.Plenum Press, New York (1980), p. 442.Google Scholar
  6. 6.
    H. Sekine, K. Tachikawa, and Y. Iwasa, Appl. Phys. Lett. 35: 472 (1979).CrossRefGoogle Scholar
  7. 7.
    H. Sekine, T. Takeuchi, and K. Tachikawa, IEEE Trans. Magn. MAG-17: 383 (1981).CrossRefGoogle Scholar
  8. 8.
    M. Suenaga, W. B. Sampson, and T. S. Luhman, IEEE Trans. Magn. MAG-17: 646 (1981).CrossRefGoogle Scholar
  9. 9.
    K. Tachikawa, T. Asano, and T. Takeuchi, to be published in Appl. Phys. Lett.Google Scholar
  10. 10.
    G. Springer, Fortschr. Miner. 45 (1): 103 (1967).Google Scholar
  11. 11.
    J. Philibert, “X-ray Optics and X-ray Microanalysis,” Academic Press, New York (1963), p. 379.Google Scholar
  12. 12.
    S. J. B. Reed, Br. J. Appl. Phys. 16: 913 (1965).CrossRefGoogle Scholar
  13. 13.
    G. R. Johnson and D. H. Douglass, J. Low Temp. Phys. 14: 565 (1974).CrossRefGoogle Scholar
  14. 14.
    T. S. Luhman and M. Suenaga, IEEE Trans. Magn. MAG-13: 800 (1977).CrossRefGoogle Scholar
  15. 15.
    A. A. Abrikosov, Sov. Phys. JETP 5: 1174 (1957).Google Scholar
  16. 16.
    R. Roberge and H. Lehuy, Phys. Lett. A 82: 259 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • K. Tachikawa
    • 1
  • T. Takeuchi
    • 1
  • T. Asano
    • 1
  • Y. Iijima
    • 1
  • H. Sekine
    • 1
  1. 1.National Research Institute for MetalsIbarakiJapan

Personalised recommendations