Molecular Mechanisms of Steroid Hormone Actions in the Brain

  • William G. Luttge


As evidenced by the diversity and comprehensiveness of the other chapters in this book, the hypothesis that endogenous and exogenous steroid hormones can have direct effects on neurons in specific regions of the brain that may in turn precipitate and/or regulate the expression of aggressive behaviors is now widely accepted, even though we still know surprisingly little about the molecular mechanisms of these hormone actions. This paucity of information is striking in view of the long history of experimental behavioral neuroendocrinology dating back for literally thousands of years, to when castration was first used to curb sexual and aggressive behaviors in man and other animals (see Luttge, 1971). Over a century ago, Berthold (1849/1944) was the first to report that castration and subsequent testis transplantation could reversibly inhibit sexual, aggressive, and crowing behaviors in roosters, thus setting the pattern for future studies on the endocrine bases of these and other behaviors in many species. The present chapter reviews recent literature on the molecular mechanisms of estrogen, progestin, androgen, and glucocorticoid hormone actions in the mammalian brain. Each of these classes of steroids has been shown to influence the display of agonistic behaviors in mammals. No attempt will be made to relate the biochemical and behavioral actions of these steroids, because this material is reviewed in other chapters in this book.


Luteinizing Hormone Brain Research Estrous Cycle Progestin Receptor Neuroscience Abstract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acs, A., Palkovits, M., & Stark, E. Changes of glutamic acid decarboxylase activity after dexameth-asone in selected areas of the rat brain. Neuroscience Letters, 1980, 19, 97–101.PubMedCrossRefGoogle Scholar
  2. Adler, N. T., & Pfaff, D. W. (Eds.). Neurobiology of reproduction. Book in preparation, 1983.Google Scholar
  3. Alderson, L. M., Starr, M. S., & Baum, M. J. Effects of castration on dopamine metabolism in rat striatum and limbic forebrain. Society for Neuroscience Abstracts, 1979, 5, 1471.Google Scholar
  4. Allera, A., Rao, G. S., & Breuer, H. Specific interaction of corticosteroids with components of the cell membrane which are involved in the translocation of the hormone into the intravesicular space of purified rat liver plasma membrane vesicles. Journal of Steroid Biochemistry, 1980, 12, 259–266.PubMedCrossRefGoogle Scholar
  5. Altman, J., & Bayer, S. A. Development of the diencephalon in the rat: I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. Journal of Comparative Neurology, 1978, 182, 945–972.PubMedCrossRefGoogle Scholar
  6. Angelucci, L., Valeri, P., Palmery, M., Paracchioli, F. R., & Catalani, A. Brain glucocorticoid receptor: correlation of in vivo uptake of corticosterone with behavioral, endocrine and neurophamacol- ogical events. Advances in Biochemical Psychopharmacology, 1980, 21, 391–406.PubMedGoogle Scholar
  7. Anton-Tay, F., Pelham, R. W., & Wurtman, R. J. Increased turnover of 3H-norepinephrine in rat brain following castration or treatment with ovine follicle-stimulating hormone. Endocrinology, 1969, 84, 1489–1492.PubMedCrossRefGoogle Scholar
  8. Asai, M., Yu, W., & Leung, B. S. Cytoplasmic competitors of estrogen receptor at chromatin binding site. Endocrine Society Abstracts, 1979, 781.Google Scholar
  9. Azmitia, E. C., & McEwen, B. S. Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat. Science, 1969, 166, 1274–1276.PubMedCrossRefGoogle Scholar
  10. Azmitia, E. C., & McEwen, B. S. Adrenalcortical influence on rat brain tryptophan hydroxylase activity. Brain Research, 1974, 78, 291–302.PubMedCrossRefGoogle Scholar
  11. Azmitia, E. C., & McEwen, B. S. Early response of rat brain tryptophan hydroxylase activity to cycloheximide, puromycin and corticosterone. Journal of Neurochemistry, 1976, 27, 773–778.PubMedCrossRefGoogle Scholar
  12. Azmitia, E. C., Algeri, S., & Costa, E. In vivo conversion of 3H-L-tryptophan into 3H-serotonin in brain areas of adrenalectomized rats. Science, 1970, 169, 201–203.PubMedCrossRefGoogle Scholar
  13. Ball, P., & Knuppen, R. Catecholoestrogens (2- and 4-hydroxyoestrogens)-Chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinologica, 1980, 93, Supple- mentum 232.Google Scholar
  14. Bapna, J., Neff, N. H., & Costa, E. A method for studying norepinephrine and serotonin metabolism in small regions of rat brain: Effect of ovariectomy on amine metabolism in anterior and posterior hypothalamus. Endocrinology, 1971, 89, 1345–1349.PubMedCrossRefGoogle Scholar
  15. Beattie, C. W., & Soyka, L. F. Influence of progestational steroids in hypothalamic tyrosine hydroxylase activity in vitro. Endocrinology, 1973, 93, 1453–1455.PubMedCrossRefGoogle Scholar
  16. Beattie, C. W., Rodgers, C. H., & Soyka, L. F. Influence of ovariectomy and ovarian steroids on hypothalamic tyrosine hydroxylase activity in the rat. Endocrinology, 1972, 91, 276–279.PubMedCrossRefGoogle Scholar
  17. Beinfeld, M. C., & Packman, P. M. Estrogen induction of specific soluble proteins in the hypothalamus of the immature rat. Biochemical and Biophysical Research Communications, 1976, 73, 646–652.PubMedCrossRefGoogle Scholar
  18. Bernard, B., & Paolino, R. Time dependent changes in brain biogenic amine dynamics following castration in male rats. Journal of Neurochemistry, 1974, 22, 951–956.PubMedCrossRefGoogle Scholar
  19. Berthold, A. A. Transplantation der Hoden. Archiv för Anatomi, Physiologie und wissenschaftliche Medicin, 1849, 16, 42–46. (Trans, in Bulletin of the History of Medicine, 1944, 16, 399–401.)Google Scholar
  20. Beyer, C. Endocrine control of sexual behavior. New York: Raven Press, 1979.Google Scholar
  21. Biegon, A., Bercovitz, H., & Samuel, D. Serotonin receptor concentration during the estrous cycle of the rat. Brain Research, 1980, 187, 221–225.PubMedCrossRefGoogle Scholar
  22. Birmingham, M. K., Stumpf, W. E., & Sar, M. Nuclear localization of aldosterone in rat brain cells assessed by autoradiography. Experientia, 1979, 35, 1240–1241.PubMedCrossRefGoogle Scholar
  23. Biro, J. The effect of luteinizing hormone releasing hormone (LH-RH) and oestrogen on RNA synthesis in anterior pituitary and different brain regions of rats. Endokrinologie, 1978, 72, 285–290.PubMedGoogle Scholar
  24. Bjorklund, A., Hakamson, R., Nobin, A., & Sjoberg, N. O. Increase in rabbit hypothalamic histidine decarboxylase activity after oophorectomy and thyroidectomy. Experientia, 1972, 28, 1232–1233.PubMedCrossRefGoogle Scholar
  25. Blaustein, J. D., & Feder, H. H. Cytoplasmic progestin receptors in guinea pig brain: Characteristics and relationship to the induction of sexual behavior. Brain Research, 1979, 169, 481–497. (a)PubMedCrossRefGoogle Scholar
  26. Blaustein, J. D., & Feder, H. H. Cytoplasmic progestin receptors in female guinea pig brain and their relationship to refractoriness in expression of female sexual behavior. Brain Research, 1979, 177, 489–498. (b)PubMedCrossRefGoogle Scholar
  27. Blaustein, J. D., & Feder, H. H. Nuclear progestin receptors in guinea pig brain measured by an in vitro exchange assay after hormonal treatments that affect lordosis. Endocrinology, 1980, 106, 1061–1069.PubMedCrossRefGoogle Scholar
  28. Blaustein, J. D., & Wade, G. N. Progestin binding by brain and pituitary cell nuclei and female rat sexual behavior. Brain Research, 1978, 140, 360–367.PubMedCrossRefGoogle Scholar
  29. Brawer, J. R., & Naftolin, F. The effects of oestrogen on hypothalamic tissue. Sex Hormones and Behavior, 1979, 62, 19–40.Google Scholar
  30. Breuer, H., & Koster, G. Interaction between oestrogens and neurotransmitters at the hypophysial- hypothalamic level. Journal of Steroid Biochemistry, 1974, 5, 961–968.CrossRefGoogle Scholar
  31. Butte, J. C., Kakihana, R., & Noble, E. P. Circadian rhythm of corticosterone levels in rat brain. Journal of Endocrinology, 1976, 68, 235–239.PubMedCrossRefGoogle Scholar
  32. Callard, G. V., Petro, Z., & Ryan, K. Conversion of androgen to estrogen and other steroids in the vertebrate brain. American Zoologist, 1978, 18, 511–523.Google Scholar
  33. Cardinali, D. P., & Gomez, E. Changes in hypothalamic noradrenaline, dopamine and serotonin uptake after estradiol administration to rats. Journal of Endocrinology, 1977, 73, 181–182.PubMedCrossRefGoogle Scholar
  34. Carrillo, A. J. Estrogen receptors in the medial basal hypothalamus of the rat following complete hypothalamic deafferentation. Brain Research, 1980, 816, 157–164.CrossRefGoogle Scholar
  35. Carroll, B. J., Heath, B., & Jarrett, D. B. Corticosteroids in brain tissue. Endocrinology, 1975, 97, 290–300.PubMedCrossRefGoogle Scholar
  36. Chamness, G. C., Jennings, A. W., & McGuire, W. L. Estrogen receptor binding to isolated nuclei. A nonsaturable process. Biochemistry, 1974, 13, 327–331.PubMedCrossRefGoogle Scholar
  37. Chan, L., Means, A. R., & O’Malley, B. W. Steroid hormone regulation of specific gene expression. Vitamins and Hormones, 1978, 36, 259–295.PubMedCrossRefGoogle Scholar
  38. Cheng, Y.-J., & Karavolas, H. J. Subcellular distribution and properties of progesterone (A4-ste- roid)5a-reductase in rat medial basal hypothalamus. Journal of Biological Chemistry, 1975, 250, 7997–8003.PubMedGoogle Scholar
  39. Chiocchio, S. R., Negro-Vilar, A., & Tramezami, J. H. Acute changes in norepinephrine content in the median eminence induced by orchidectomy or testosterone replacement. Endocrinology, 1976, 99, 629–635.PubMedGoogle Scholar
  40. Chytil, F., & Toft, D. O. Corticoid binding component in rat brain. Journal of Neurochemistry, 1972, 19, 2877–2880.PubMedCrossRefGoogle Scholar
  41. Cidlowski, J. A., & Muldoon, T. G. Estrogenic regulation of cytoplasmic receptor populations in estrogen-responsive tissue of the rat. Endocrinology, 1974, 95, 1621–1629.PubMedCrossRefGoogle Scholar
  42. Cidlowski, J. A., & Muldoon, T. G. Sex-related differences in the regulation of cytoplasmic estrogen receptor levels in responsive tissues of the rat. Endocrinology, 1976, 98, 833–841.PubMedCrossRefGoogle Scholar
  43. Clark, C. R., & Nowell, N. W. Binding properties of testosterone receptors in the hypothalamic- preoptic area of the adult male mouse brain. Steroids, 1979, 33, 407–426.PubMedCrossRefGoogle Scholar
  44. Clark, J. H., & Peck, E. J., Jr. Nuclear retention of receptor oestrogen complex and nuclear acceptor sites. Nature, 1976, 260, 635–637.PubMedCrossRefGoogle Scholar
  45. Cornwell-Jones, C. A., & Marasco, E. M. Castration decreases olfactory bulb norepinephrine in male rats but not hamsters. Brain Research, 1980, 183, 377–382.PubMedCrossRefGoogle Scholar
  46. Cramer, O. M., Parker, C. R., & Porter, J. C. Estrogen inhibition of dopamine release into hypophysial portal blood. Endocrinology, 1979, 104, 419–422. (a)PubMedCrossRefGoogle Scholar
  47. Cramer, O. M., Parker, C. R., & Porter, J. C. Stimulation of dopamine release into hypophysial portal blood by administration of progesterone. Endocrinology, 1979, 105, 929–933. (b)PubMedCrossRefGoogle Scholar
  48. Crowley, W. R., O’Donohue, T. L., & Jacobowitz, D. M. Changes in catecholamine content in discrete brain nuclei during the estrous cycle of the rat. Brain Research, 1978, 147, 315–326.PubMedCrossRefGoogle Scholar
  49. Crowley, W. R., O’Donohue, T. L., Wachslicht, H., & Jacobowitz, D. M. Effects of estrogen and progesterone on plasma gonadotropins and on catecholamine levels and turnover in discrete brain regions of ovariectomized rats. Brain Research, 1978, 154, 345–357.PubMedCrossRefGoogle Scholar
  50. Crowley, W. R., O’Donohue, T. L., Muth, E. A., & Jacobowitz, D. M. Effects of ovarian hormones on levels of luteinizing hormone in plasma and on serotonin concentrations in discrete brain nuclei. Brain Research Bulletin, 1979, 4, 571–574.PubMedCrossRefGoogle Scholar
  51. Curtis, D. R., & Johnston, G. A. R. Amino acid transmitters in the mammalian central nervous system. Ergebnisse der Physiologie, 1974, 69, 97–188.Google Scholar
  52. Davies, I. J., Naftolin, F., Ryan, K. J., Fishman, J., & Siu, J. The affinity of catechol estrogens for estrogen receptors in the pituitary and anterior hypothalamus of the rat. Endocrinology, 1975, 97, 554–557.PubMedCrossRefGoogle Scholar
  53. Debus, G., & Kehr, W. Catecholamine and 5-hydroxytryptamine synthesis and metabolism following intraventricular injection of dibutyryl cyclic AMP. Journal of Neural Transmission, 1979, 45, 195–206.PubMedCrossRefGoogle Scholar
  54. Denari, J. H., & Rosner, J. M. Sexual steroid uptake in the alloxanized diabetic rat. Steroids and Lipids Research, 1972, 3, 151–155.PubMedGoogle Scholar
  55. Dokas, L. A. Corticosterone and RNA metabolism in the rat hippocampus. Society for Neuroscience Abstracts, 1979, 5, 1498.Google Scholar
  56. Donoso, A. O. Induction of prolactin and luteinizing hormone release by histamine in male and female rats and the influence of brain transmitter antagonists. Journal of Endocrinology, 1978, 76, 193–202.PubMedCrossRefGoogle Scholar
  57. Donoso, A. O., & Moyano, M. B. G. Adrenergic activity in hypothalamus and ovulation. Proceedings of the Society of Experimental Biology and Medicine, 1970, 135, 633–635.Google Scholar
  58. Donoso, A. O., Stefano, F. J. E., Biscardi, A. M., & Cukier, J. Effects of castration on hypothalamic catecholamines. American Journal of Physiology, 1967, 212, 737–739.PubMedGoogle Scholar
  59. Dunn, A. J., Gildersleeve, N. B., & Gray, H. E. Mouse brain tyrosine hydroxylase and glutamic acid decarboxylase following treatment with adrenocorticotrophic hormone, vasopressin or corticosterone. Journal of Neurochemistry, 1978, 31, 977–982.PubMedCrossRefGoogle Scholar
  60. Early, C. J., & Leonard, B. E. GABA and gonadal hormones. Brain Research, 1978, 155, 27–34.CrossRefGoogle Scholar
  61. Eaton, G. G., Goy, R. W., & Resko, J. A. Brain uptake and metabolism of estradiol benzoate and estrous behavior in ovariectomized guinea pigs. Hormones and Behavior, 1975, 6, 81–97.PubMedCrossRefGoogle Scholar
  62. Edwards, E. M., & Rousseau, G. G. Effects of adrenalectomy and corticosteroids on three enzymes involved in amino acid metabolism in the brain of adult and newborn rats. Journal of Steroid Biochemistry, 1980, 13, 567–569.PubMedCrossRefGoogle Scholar
  63. Eisenfeld, A. J. 3H-Estradiol: In vitro binding to macromolecules from rat hypothalamus, anterior pituitary and uterus. Endocrinology, 1970, 86, 1313–1318.CrossRefGoogle Scholar
  64. Enderly, C. A., & Wilson, C. A. The effect of ovarian steroids on the accumulation of 3H-labelled monoamines by hypothalamic tissue in vitro. Brain Research, 1974, 73, 321–331.CrossRefGoogle Scholar
  65. Engel, J., Ahlenius, S., Almgren, O., Carlsson, A., Larsson, K., & Sodersten, P. Effects of gonadec- tomy and hormone replacement on brain monoamine synthesis in male rats. Pharmacology, Biochemistry and Behavior, 1979, 10, 149–154.CrossRefGoogle Scholar
  66. Ermish, A., & Ruhle, H. -J. Autoradiographic demonstration of aldosterone-concentrating neuron populations in rat brain. Brain Research, 1978, 147, 154–158.CrossRefGoogle Scholar
  67. Etgen, A. M., Lee, K. S., & Lynch, G. Glucocorticoid modulation of specific protein metabolism in hippocampal slices maintained in vitro. Brain Research, 1979, 165, 37–45.PubMedCrossRefGoogle Scholar
  68. Etgen, A. M., Martin, M., Gilbert, R.J., Lynch, G. Characterization of corticosterone-induced protein synthesis in hippocampal slices. Journal of Neurochemistry, 1980, 35, 598–602.PubMedCrossRefGoogle Scholar
  69. Fahn, S. Regional distribution studies of GABA and other putative neurotransmitters and their enzymes. In E. Roberts, T. N. Chase, & D. B. Tower (Eds.), GABA in nervous system function. New York: Raven Press, 1976.Google Scholar
  70. Feder, H. H., Siegel, H., & Wade, G. N. Uptake of [6,7,-3H] estradiol-17β in ovariectomized rats, guinea pigs, and hamsters: Correlation with species differences in behavioral responsiveness to estradiol. Brain Research, 1974, 71, 93–103.PubMedCrossRefGoogle Scholar
  71. Fekete, M. I., Stark, E., Herman, J. P., Palkovits, M., & Kanyicska, B. Catecholamine concentration of various brain nuclei of the rat as affected by ACTH and corticosterone. Neuroscience Letters, 1978, 10, 153–158.PubMedCrossRefGoogle Scholar
  72. Fleischer-Lambropoulos, H., Sarkander, H.-I., & Brade, W. P. Effects of polyamines on amino acid incorporation into protein by cerebral and cerebellar as well as “neural” and “glial” nuclei of rat brain. Biochemical and Biophysical Research Communications, 1975, 63, 792–800.PubMedCrossRefGoogle Scholar
  73. Florez-Lozano, J. A., Menendez-Patterson, A., & Marin, B. Sexual behavior of the pancreatectomized (95%) male hamster (Mesocricetus auratus). Physiology & Behavior, 1978, 20, 465–468.CrossRefGoogle Scholar
  74. Foreman, M. M., & Porter, J. C. Effects of catechol estrogens and catecholamines on hypothalamic and corpus striatal tyrosine hydroxylase activity. Journal of Neurochemistry, 1980, 34, 1175–1183.PubMedCrossRefGoogle Scholar
  75. Foreman, M. M., Wickersham, E. W., & Anthony, A. Cytophotometric analysis of hypothalamic RNA fluctuations during the rat estrous cycle. Brain Research, 1977, 119, 471–475.PubMedCrossRefGoogle Scholar
  76. Fox, T. O. Conversion of the hypothalamic estradiol receptor to the ‘nuclear’ form. Brain Research, 1977, 120, 580–583.PubMedCrossRefGoogle Scholar
  77. Fox, T. O., & Johnston, C. Estradiol receptors from mouse brain and uterus: Binding to DNA. Brain Research, 1974, 77, 330–336.PubMedCrossRefGoogle Scholar
  78. Franks, S., Ball, P., Naftolin, F., & Ruf, K. B. Effect of catechol oestrogens on induced ovulation in the immature rat. Journal of Endocrinology, 1980, 86, 263–268.PubMedCrossRefGoogle Scholar
  79. Frohman, L. A., & Berelowitz, M. The physiological and pharmacological control of anterior pituitary hormone secretion. In C. B. Nemeroff & A. J. Dunn (Eds.), Peptides, hormones, and behavior: Molecular and behavioral neuroendocrinology. New York: Spectrum Publications, 1983.Google Scholar
  80. Ganong, W. F. The role of catecholamines and acetylcholine in the regulation of endocrine function. Life Sciences, 1974, 15, 1401–1414.PubMedCrossRefGoogle Scholar
  81. Gentry, R. T., Wade, G. N., & Blaustein, J. D. Binding of [3H]estradiol by brain cell nuclei and female rat sexual behavior: Inhibition by experimental diabetes. Brain Research, 1977, 135, 135–146.PubMedCrossRefGoogle Scholar
  82. Ginsburg, M., MacLusky, N. J., Morris, J. D., & Thomas, P. J. Physiological variation in abundance of oestrogen specific high-affinity binding sites in hypothalamus, pituitary and uterus of the rat. Journal of Endocrinology, 1975, 64, 443–449.PubMedCrossRefGoogle Scholar
  83. Goertz, B. Effect of polamines on cell-free protein synthesizing systems from rat cerebral cortex, cerebellum and liver. Brain Research, 1979, 173, 125–135.PubMedCrossRefGoogle Scholar
  84. Gordon, J. H., Nance, D. M., Wallis, C. J., & Gorski, R. A. Effects of estrogen on dopamine turnover, glutamic acid decarboxylase activity and lordosis behavior in septal lesioned female rats. Brain Research Bulletin, 1977, 2, 341–346.PubMedCrossRefGoogle Scholar
  85. Gordon, J. H., Nance, D. M., Wallis, C. J., & Gorski, R. A. Effect of septal lesions and chronic estrogen treatment on dopamine, GABA and lordosis behavior in male rats. Brain Research Bulletin, 1979, 4, 85–89.PubMedCrossRefGoogle Scholar
  86. Gorski, J., & Gannon, F. Current models of steroid hormone action: A critique. Annual Review of Physiology, 1976, 38, 425–450.PubMedCrossRefGoogle Scholar
  87. Gray, H. E., Jasper, T. W., Luttge, W. G., Shukla, J. B., & Rennert, O. M. Estrogen increases hypothalamic and pituitary polyamine levels in ovariectomized rats. Journal of Neurochemistry, 1980, 34, 753–755.PubMedCrossRefGoogle Scholar
  88. Green, A. R., & Curzon, G. Effects of hydrocortisone and immobilization on tryptophan metabolism in brain and liver of rats of different ages. Biochemical Pharmacology, 1975, 24, 713–716.PubMedCrossRefGoogle Scholar
  89. Greenstein, B. D. An assay for RNA polymerase activity in rat brain nuclei-Effects of injection of oestradiol benzoate. Journal of Endocrinology, 1980, 85, 341–347.PubMedCrossRefGoogle Scholar
  90. Grosser, B. I., & Axelrod, L. R. Conversion of cortisol to cortisol acetate, cortisone acetate and cortisone by the developing primate brain. Steroids, 1968, 11, 827–836.PubMedCrossRefGoogle Scholar
  91. Grosser, B. I., Stevens, W., & Reed, D. J. Properties of corticosterone-binding macromolecules from rat brain cytosol. Brain Research, 1973, 57, 387–395.PubMedCrossRefGoogle Scholar
  92. Gunaga, K. P., & Menon, K. M. J. Effect of catecholamines and ovarian hormones on cyclic AMP accumulation in rat hypothalamus. Biochemical and Biophysical Research Communications, 1973, 54, 440–448.PubMedCrossRefGoogle Scholar
  93. Gunaga, K. P., Kawano, A., & Menon, K.M.J. In vivo effect of estradiol benzoate on the accumulation of adenosine 3’,5’-cyclic monophosphate in the rat hypothalamus. Neuroendocrinology, 1974, 16, 273–281.CrossRefGoogle Scholar
  94. Gustafsson, J. -A., Pousette, A., & Svensson, E. Sex-specific occurrence of androgen receptors in rat brain. Journal of Biological Chemistry, 1976, 251, 4047–4054.PubMedGoogle Scholar
  95. Heritage, A. S., & Grant, L. D. 3H-Dihydrotestosterone in catecholamine neurons of rat brain stem. Anatomical Record, 1979, 193, 564.Google Scholar
  96. Heritage, A. S., Grant, L. D., & Stumpf, W. E. 3H-Estradiol in catecholamine neurons of rat brain stem: Combined localization by autoradiography and formaldehyde-induced fluorescence. Journal of Comparative Neurology, 1977, 176, 607–630.PubMedCrossRefGoogle Scholar
  97. Heritage, A. S., Stumpf, W. E., Sar, M., & Grant, L. D. Brainstem catecholamine neurons are target sites for sex steroid hormones. Science, 1980, 207, 1377–1379.PubMedGoogle Scholar
  98. Hill, M. J., Goddard, P., & Williams, R. E. O. Gut bacteria and aetiology of cancer of the breast. Lancet, 1971, 2, 472–473.PubMedCrossRefGoogle Scholar
  99. Honma, K., & Wuttke, W. Norepinephrine and dopamine turnover rates in the medial preoptic area and medial-basal hypothalamus of the rat brain after various endocrinological manipulations. Endocrinology, 1980, 106, 1848–1853.PubMedCrossRefGoogle Scholar
  100. Horowitz, S. B., & Moore, L. C. The nuclear permeability, intracellular distribution and diffusion of insulin in the amphibian oocyte. Journal of Cellular Biology, 1974, 60, 405–415.CrossRefGoogle Scholar
  101. Hruska, R. E., & Silbergeld, E. K. Increased dopamine receptor sensitivity after estrogen treatment. Society for Neuroscience Abstracts, 1979, 5, 236.Google Scholar
  102. Hyyppa, M. T., Cardinali, D. P., Baumgarten, H. G., & Wurtman, R. J. Rapid accumulation of H3- serotonin in brains of rats receiving intraperitoneal H3-tryptophan: Effects of 5,6-dihydroxy - tryptamine or female sex hormones. Journal of Neural Transmission, 1973, 34, 111–124.PubMedCrossRefGoogle Scholar
  103. Inaba, M., & Kamata, K. Effect of estradiol-17’ and other steroids on noradrenaline and dopamine binding to synaptic membrane fragments of rat brain. Journal of Steroid Biochemistry, 1979, 11, 1491–1497.PubMedCrossRefGoogle Scholar
  104. Iuvone, P. M., Morasco, J., & Dunn, A. J. Effects of corticosterone on the synthesis of [3H]catecholamines in the brains of CD-1 mice. Brain Research, 1977, 120, 571–576.PubMedCrossRefGoogle Scholar
  105. Jasper, T. W. Polyamines in the normally developing male and female mouse brain. Unpublished doctoral dissertation, University of Florida, 1980.Google Scholar
  106. Jellink, P. H., Davis, P. G., Krey, L. C., Luine, V. N., Roy, E. J., & McEwen, B. S. Central and peripheral action of estradiol and catechol estrogens administered by continuous infusion. Endocrine Society Abstracts, 1979, 838.Google Scholar
  107. Jungblut, P. W., Kallweit, E., Sierralta, W., Truitt, A. J., & Wagner, R. K. The occurrence of steroidfree, ‘activated’ estrogen receptor in target cell nuclei. Hoppe-Seyler’s Zietschrift för Physiologische Chemie, 1978, 359, 1259–1268.CrossRefGoogle Scholar
  108. Jungblut, P. W., Hughes, A., Gaues, J., Kallweit, E., Marschler, I., Pari, F., Sierralta, W., Szendro, P. I., & Wagner, R. K. Mechanisms involved in the regulation of steroid receptor levels. Journal of Steroid Biochemistry, 1979, 11, 273–278.PubMedCrossRefGoogle Scholar
  109. Kahwanago, I., Heinrichs, W. L. R., & Herrmann, W. L. Estradiol receptors in hypothalamus and anterior pituitary gland: Inhibition of estradiol binding by SH-group blocking agents and clom- iphene citrate. Endocrinology, 1970, 86, 1319–1326.PubMedCrossRefGoogle Scholar
  110. Kaneyuki, T., Kohsaka, M., & Shohmori, T. Sex hormone metabolism in the brain-Influence of central acting drugs on 5-alpha-reduction in rat diencephalon. Endocrinologia Japonica, 1979, 26, 345–352.PubMedCrossRefGoogle Scholar
  111. Kar, van de, L., Levine, J., & Van Orden, L. S. Serotonin in hypothalamic nuclei: Increased content after castration of male rats. Neuroendocrinology, 1978, 27, 186–192.PubMedCrossRefGoogle Scholar
  112. Kato, J. The role of hypothalamic and hypophyseal 5a-dihydrotestosterone, estradiol and progesterone receptors in the mechanism of feedback action. Journal of Steroid Biochemistry, 1975, 6, 979–987.PubMedCrossRefGoogle Scholar
  113. Kato, J. Cytosol and nuclear receptors for 5a-dihydrotestosterone and testosterone in the hypothalamus and hypophysis, and testosterone receptors isolated from neonatal female rat hypothalamus. Journal of Steroid Biochemistry, 1976, 7, 1179–1187.PubMedCrossRefGoogle Scholar
  114. Kato, J., & Minaguchi, H. Cholinergic and adrenergic mechanisms in the female rat hypothalamus with special reference to reproductive functions. Gunma Symposium on Endocrinology, 1964, 1, 269–281.Google Scholar
  115. Kato, J., & Onouchi, T. Nuclear progesterone receptors and characterization of cytosol receptors in the rat hypothalamus and anterior hypophysis. Journal of Steroid Biochemistry, 1979, 11, 845–854.PubMedCrossRefGoogle Scholar
  116. Kazama, N., & Longcope, C. In vivo studies of the metabolism of estrone and estradiol-17’ by the brain. Steroids, 1974, 23, 469–481.PubMedCrossRefGoogle Scholar
  117. Kelly, M. J., Moss, R. L., & Dudley, C. A. The effects of ovariectomy on the responsiveness of preoptic-septal neurons to microelectrophoresed estrogen. Neuroendocrinology, 1978, 25, 204–211.PubMedCrossRefGoogle Scholar
  118. Kendrick, K. M., & Drewett, R. F. Testosterone-sensitive neurons respond to oestradiol, but not to dihydrotestosterone. Nature, 1980, 286, 67–68.PubMedCrossRefGoogle Scholar
  119. Kim, Y. S., Stumpf, W., Sar, M., & Martinez-Vargas, M. C. Estrogen and androgen target cells in the brain of fishes, reptiles and birds: Phylogeny and ontogeny. American Zoologist, 1978, 18, 425–434.Google Scholar
  120. Kiely, M. E. Effect of hypophysectomy, adrenalectomy and glucocorticoids on tryptophan accumulation by rat cerebral cortex slices. Research Communications in Psychology, Psychiatry and Behavior, 1980, 5, 49–60.Google Scholar
  121. Kizer, J. S., Palkovits, M., Zivin, J., Brownstein, M., Saavedra, J. M., & Kopin, J. J. The effect of endocrinological manipulations of tyrosine hydroxylase and dopamine-β-hydroxylase activities in individual hypothalamic nuclei of the adult male rat. Endocrinology, 1974, 95, 799–812.PubMedCrossRefGoogle Scholar
  122. Kizer, J. S., Palkovits, M., Kopin, I. J., Saavedra, J. M., & Brownstein, M. J. Lack of effect of various endocrine manipulations on tryptophan hydroxylase activity of individual nuclei of the hypothalamus, limbic system and midbrain of the rat. Endocrinology, 1976, 98, 743–747.PubMedCrossRefGoogle Scholar
  123. Kizer, J. S., Humm, J., Nicholson, G., Greeley, G., & Youngblood, W. The effect of castration, thyroidectomy and haloperidol upon the turnover rates of dopamine and norepinephrine and the kinetic properties of tyrosine hydroxylase in discrete hypothalamic nuclei of the male rat. Brain Research, 1978, 146, 95–107.PubMedCrossRefGoogle Scholar
  124. de Kloet, E. R., & McEwen, B. S. Differences between cytosol receptor complexes with corticosterone and dexamethasone in hippocampal tissue from rat brain. Biochemica et Biophysica Acta, 1976, 421, 124–132.Google Scholar
  125. de Kloet, E. R., Wallach, G., & McEwen, B. S. Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology, 1975, 96, 598–609.PubMedCrossRefGoogle Scholar
  126. Kobayashi, R. M., & Reed, K. C. Conversion of androgens to estrogens (aromatization) in discrete regions of the rat brain: Sexual differences and effects of castration. Society for Neuroscience Abstracts, 1977, 3, 1115.Google Scholar
  127. Kovacs, G. L., Telegdy, G., & Lissak, K. Dose-dependent action of corticosteroids on brain serotonin content and passive avoidance behavior. Hormones and Behavior, 1977, 8, 155–165.PubMedCrossRefGoogle Scholar
  128. Krause, J. E., & Karavolas, H. J. Subcellular location of hypothalamic progesterone metabolizing enzymes and evidence for distinct NADH- and NADPH-linked 3a-hydroxysteroid oxidore- ductase activity. Journal of Steroid Biochemistry, 1980, 13, 271–280.PubMedCrossRefGoogle Scholar
  129. Krey, L. C., Kamel, F., & McEwen, B. S. Parameters of neuroendocrine aromatization and estrogen receptor occupation in the male rat. Brain Research, 1980, 193, 277–283.PubMedCrossRefGoogle Scholar
  130. Krieger, A., & Wuttke, W. Effects of ovariectomy and hyperprolactinemia on tyrosine hydroxylase and dopamine-β-hydroxylase activity in various limbic and hypothalamic structures. Brain Research, 1980, 193, 173–180.PubMedCrossRefGoogle Scholar
  131. Kubli-Garfias, C., & Whalen, R. E. Induction of lordosis behavior in female rats by intravenous administration of progestins. Hormones and Behavior, 1977, 9, 380–386.PubMedCrossRefGoogle Scholar
  132. Kueng, W., Wirz-Justice, A., Menzi, B., & Chappuis-Arndt, E. Regional brain variation of tryptophan monoamines, monoamine oxidase activity, plasma free tryptophan and total tryptophan during the estrous cycle of the rat. Neuroendocrinology, 1976, 21, 289–296.PubMedCrossRefGoogle Scholar
  133. Kumakura, K., Hoffman, M., Cocchi, D., Trabucchi, M., Speno, P. F., & Muller, E. E. Long term effect of ovariectomy on dopamine stimulated adenylate cyclase in rat striatum and nucleus accumbens. Psychopharmacologia, 1979, 61, 13–16.CrossRefGoogle Scholar
  134. Kumar, S. A., Beach, T. A., & Dickerman, H. W. Specificity of oligodeoxynucleotide binding of mouse uterine cytosol estradiol receptors. Proceedings of the National Academy of Science (U.S.A.), 1980, 77, 3341–3345.CrossRefGoogle Scholar
  135. Ladisich, W. Effects of progesterone on regional 5-hydroxytryptamine metabolism in rat brain. Neuropharmacology, 1974, 13, 877–883.PubMedCrossRefGoogle Scholar
  136. Landau, I. T., & Feder, H. H. Whole cell and nuclear uptake of [3H]estriol in neural and peripheral tissues of the ovariectomized guinea pig. Brain Research, 1977, 121, 190–195.PubMedCrossRefGoogle Scholar
  137. Landau, I. T., & Feder, H. H. Uptake and metabolism of 3H-estrone in neural and peripheral tissue of gonadectomized adult and neonatal guinea pigs. Psychoneuroendocrinology, 1980, 5, 25–32.PubMedCrossRefGoogle Scholar
  138. Lee, H., Davies, I. J., & Ryan, K. J. Progesterone receptor in the hypothalamic cytosol of female rats. Endocrinology, 1979, 104, 791–800.PubMedCrossRefGoogle Scholar
  139. Levy, C., Mortel, R., Eychenne, B., Robel, P., & Baulieu, E. E. Unoccupied nuclear oestradiol- receptor sites in normal human endometrium. Biochemical Journal, 1980, 185, 733–738.PubMedGoogle Scholar
  140. Lieberburg, I., & McEwen, B. S. Estradiol-17’ a metabolite of testosterone recovered in cell nuclei from limbic areas of adult male rat brains. Brain Research, 1975, 91, 171–174.PubMedCrossRefGoogle Scholar
  141. Lieberburg, I., & McEwen, B. S. Brain cell nuclear retention of testosterone metabolites, 5a-dihy- drotestosterone and estradiol-17’ in adult rats. Endocrinology, 1977, 100, 588–597.PubMedCrossRefGoogle Scholar
  142. Lieberburg, I., MacLusky, N. J., & McEwen, B. S. 5a-Dihydrotestosterone (DHT) receptors in rat brain and pituitary cell nuclei. Endocrinology, 1977, 100, 598–607.PubMedCrossRefGoogle Scholar
  143. Linkie, D. M. Estrogen receptors in different target tissues: Similarities of form-dissimilarities of transformation. Endocrinology, 1977, 101, 1862–1870.PubMedCrossRefGoogle Scholar
  144. Linkie, D. M., & Siiteri, P. K. A re-examination of the interaction of estradiol with target cell receptors. Journal of Steroid Biochemistry, 1978, 9, 1071–1078.PubMedCrossRefGoogle Scholar
  145. Lippman, M., Bolan, G., Monaco, M., Pinkus, L., & Engel, L. Model systems for the study of estrogen action in tissue culture. Journal of Steroid Biochemistry, 1976, 7, 1045–1051.PubMedCrossRefGoogle Scholar
  146. Little, M., Szendro, P., Hughes, A., & Jungblut, P. W. Biosynthesis and transformation of microsomal and cytosol estradiol receptors. Journal of Steroid Biochemistry, 1975, 6, 493–500.PubMedCrossRefGoogle Scholar
  147. Lloyd, T., & Ebersole, B. J. Feedback inhibition of tyrosine hydroxylase from five regions of rat brain by 2-hydroxyestradiol and dihydroxyphenylalanine. Journal of Neurochemistry, 1980, 34, 726–731.PubMedCrossRefGoogle Scholar
  148. Lloyd, T., Weisz, J., & Breakfield, X. O. The catechol estrogen, 2-hydroxyestradiol, inhibits catechol- O-methyltransferase activity in neuroblastoma cells. Journal of Neurochemistry, 1978, 31, 245–250.PubMedCrossRefGoogle Scholar
  149. Loy, R., & Milner, T. A. Sexual dimorphism in extent of axonal sprouting in rat hippocampus. Science, 1980, 205, 1282–1284.CrossRefGoogle Scholar
  150. Luck, D. N. Comparison of the effects of oestrogen on macromolecular synthesis in the uterus and brain of the immature mouse. Journal of Reproduction and Fertility, 1975, 43, 359–362.PubMedCrossRefGoogle Scholar
  151. Luine, V. N., & McEwen, B. S. Effect of oestradiol on turnover of type A monoamine oxidase in brain. Journal of Neurochemistry, 1911, 28, 1221–1227. (a)CrossRefGoogle Scholar
  152. Luine, V. N., & McEwen, B. S. Effects of an estrogen antagonist on enzyme activities and (3H)estradiol nuclear binding in uterus, pituitary and brain. Endocrinology, 1977, 100, 903–910. (b)PubMedCrossRefGoogle Scholar
  153. Luine, V. N., Khylcheveskaya, R. I., & McEwen, B. S. Oestrogen effects on brain and pituitary enzyme activities. Journal of Neurochemistry, 1974, 23, 925–934.PubMedCrossRefGoogle Scholar
  154. Luine, V. N., Khylcheveskaya, R. I., & McEwen, B. S. Effect of gonadal hormones on enzyme activities in brain and pituitary of male and female rats. Brain Research, 1975, 86, 283–292. (a)PubMedCrossRefGoogle Scholar
  155. Luine, V. N., Khylcheveskaya, R. I., & McEwen, B. S. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Research, 1975, 86, 293–306. (b)PubMedCrossRefGoogle Scholar
  156. Luine, V. N., McEwen, B. S., & Black, I. B. Effect of 17’-estradiol on hypothalamic tyrosine hydroxylase activity. Brain Research, 1977, 120, 188–192.PubMedCrossRefGoogle Scholar
  157. Luine, V. N., MacLusky, N. J., & McEwen, B. S. Testosterone effects on enzymes in central and peripheral target sites in Tfm mutant mice. Society for Neuroscience Abstracts, 1979, 5, 1529.Google Scholar
  158. Luine, V. N., Park, D., Joh, T., Reis, D., & McEwen, B. S. Immunochemical demonstration of increased choline acetyltransferase concentration in rat preoptic area after estradiol administration. Brain Research, 1980, 191, 273–277.PubMedCrossRefGoogle Scholar
  159. Lupo Di Prisco, C., Lucarini, N., & Dessi-Fulgheri, F. Testosterone aromatization in rat brain is modulated by social environment. Physiology & Behavior, 1978, 20, 345–348.CrossRefGoogle Scholar
  160. Luttge, W. G. The role of gonadal hormones in the sexual behavior of the rhesus monkey and human: A literature survey. Archives of Sexual Behavior, 1971, 1, 61–88.CrossRefGoogle Scholar
  161. Luttge, W. G. The estrous cycle of the rat: Effects on the accumulation of estrogenic metabolites in brain and peripheral tissues. Brain Research, 1972, 38, 315–325.PubMedCrossRefGoogle Scholar
  162. Luttge, W. G. Endocrine control of mammalian male sexual behavior: An analysis of the potential role of testosterone metabolites. In C. Beyer (Ed.), Endocrine control of sexual behavior. New York: Raven Press, 1979.Google Scholar
  163. Luttge, W. G. Cerebral effects of gonadal steroid hormones. In C. B. Nemeroff & A. J. Dunn (Eds.), Peptides, Hormones and Behavior: Molecular and behavioral neuroendocrinology. New York: Spectrum Publications, 1983.Google Scholar
  164. Luttge, W. G., & Jasper, T. W. Studies on the possible role of 2-OH-estradiol in the control of sexual behavior in female rats. Life Sciences, 1977, 20, 419–426.PubMedCrossRefGoogle Scholar
  165. Luttge, W. G., & Whalen, R. E. The accumulation, retention and interaction of oestradiol and oestrone in central neural and peripheral tissues of gonadectomized female rats. Journal of Endocrinology, 1972, 52, 379–395.PubMedCrossRefGoogle Scholar
  166. Luttge, W. G., Gray, H. E., & Hughes, J. R. Regional and subcellular 3H-estradiol localization in selected brain regions and pituitary of female mice: Effects of unlabeled estradiol and various anti-hormones. Brain Research, 1976, 104, 273–281.PubMedCrossRefGoogle Scholar
  167. Maas, J. W., & Mednieks, M. Hydrocortisone-mediated increase of norepinephrine uptake by brain slices. Science, 1971, 171, 178–179.PubMedCrossRefGoogle Scholar
  168. MacLusky, N. J., & McEwen, B. S. Progestin receptors in rat brain: Distribution and properties of cytoplasmic progestin-binding sites. Endocrinology, 1980, 106, 192–202.PubMedCrossRefGoogle Scholar
  169. MacLusky, N. J., Turner, B. B., & McEwen, B. S. Corticosteroid binding in rat brain and pituitary cytosols: Resolution of multiple binding components by polyacrylamide gel based isoelectric focusing. Brain Research, 1977, 130, 564–571.PubMedCrossRefGoogle Scholar
  170. Mainwaring, W. I. P., Symes, E. K., & Higgins, S. J. Nuclear components responsible for the retention of steroid-receptor complexes, especially from the stand-point of the specificity of hormonal responses. Biochemical Journal, 1976, 156, 129–141.PubMedGoogle Scholar
  171. Manak, R., Wertz, N., Slabaugh, M., Denari, H., Wang, J.-T., & Gorski, J. Purification and characterization of the estrogen-induced protein (IP) of the rat uterus. Molecular and Cellular Endocrinology, 1980, 17, 119–132.PubMedCrossRefGoogle Scholar
  172. Martin, P. M., & Sheridan, P. J. Intracellular distribution of estrogen receptors-A function of preparation. Experientia, 1980, 36, 620–622.PubMedCrossRefGoogle Scholar
  173. Matsumoto, A., & Arai, Y. Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell and Tissue Research, 1979, 198, 427–433.PubMedCrossRefGoogle Scholar
  174. Matsumoto, A., & Arai, Y. Sexual dimorphism in wiring pattern in the hypothalamic arcuate nucleus and its modification by neonatal hormone environment. Brain Research, 1980, 190, 238–242.PubMedCrossRefGoogle Scholar
  175. Mazurkiewicz-Kwilecki, I. M., & Prell, G. D. Brain histamine: Plasma corticosterone, spontaneous locomotor activity and temperature. Pharmacology, Biochemistry and Behavior, 1980, 12, 549–553.CrossRefGoogle Scholar
  176. McEwen, B. S., Magnus, C., & Wallach, G. Soluble corticosterone-binding macromolecules extracted from rat brain. Endocrinology, 1972, 90, 217–226.PubMedCrossRefGoogle Scholar
  177. McEwen, B. S., Wallach, G., & Magnus, C. Corticosterone binding to hippocampus: Immediate and delayed influences of the absence of adrenal secretion. Brain Research, 1974, 70, 321–334.PubMedCrossRefGoogle Scholar
  178. McGinnis, M. Y., Gordon, J. H., & Gorski, R. A. Time course and localization of the effects of estrogen on glutamic acid decarboxylase activity. Journal of Neurochemistry, 1980, 34, 785–792. (a)PubMedCrossRefGoogle Scholar
  179. McGinnis, M. Y., Gordon, J. H., & Gorski, R. A. Influence of γ-aminobutyric acid on lordosis behavior and dopamine activity in estrogen primed spayed female rats. Brain Research, 1980, 184, 179–191. (b)PubMedCrossRefGoogle Scholar
  180. Menendez-Patterson, A., Florez-Lozano, J. F., & Marin, B. Effects of ovariectomy on the oxidative metabolism of the central nervous system and adrenal glands in female hamster (Mesocricetus auratus). Experientia, 1979, 35, 349–350.PubMedCrossRefGoogle Scholar
  181. Meyer, J. S., Luine, V. N., Khylcheveskaya, R. I., & McEwen, B. S. Glucocorticoids and hippocampal enzyme activity. Brain Research, 1979, 166, 172–175.PubMedCrossRefGoogle Scholar
  182. Meyerson, B. J., & Eliasson, M. Pharmacological and hormonal control of reproductive behavior. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.), (Vol. 8): Handbook of Psychopharmacology Drugs, transmitters, and behavior. New York: Plenum Press, 1977.Google Scholar
  183. Michal, E. K. Dexamethasone inhibits multi-unit activity in the rat hippocampus. Brain Research, 1974, 65, 180–183.PubMedCrossRefGoogle Scholar
  184. Millard, S. A., Costa, E., & Gall, E. M. On the control of brain serotonin turnover by end product inhibition. Brain Research, 1972, 40, 545–551.PubMedCrossRefGoogle Scholar
  185. Miller, A. L., Chaptal, C., McEwen, B. S., & Peck, E. J. Modulation of high affinity GABA uptake into hippocampal synaptosomes by glucocorticoids. Psychoneuroendocrinology, 1978, 3, 155–164.PubMedCrossRefGoogle Scholar
  186. Mioduszewski, R., Grandison, L., & Meites, J. Stimulation of prolactin release in rats by GABA. Proceedings of the Society of Experimental Biology and Medicine, 1976, 151, 44–46.Google Scholar
  187. Mobley, P. L., & Sulser, F. Adrenal corticoids regulate sensitivity of noradrenaline receptor coupled adenylate cyclase in brain. Nature, 1980, 286, 608–609.PubMedCrossRefGoogle Scholar
  188. Moguilevsky, J. A. Oxidative activity of different hypothalamic areas during sexual cycle in rats. Acta Physiologica Latino Americana, 1965, 15, 423–424.PubMedGoogle Scholar
  189. Moguilevsky, J. A., Libertun, C., & Foglia, V. G. Metabolic sensitivity of different hypothalamic areas to luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone. Neuroendocrinology, 1970, 6, 153–159. (a)PubMedCrossRefGoogle Scholar
  190. Moguilevsky, J. A., Libertun, C., & Foglia, V. G. Oxidative metabolism of the hypothalamus in hypophysectomized-castrated rats. Experientia, 1970, 26, 421–422. (b)PubMedCrossRefGoogle Scholar
  191. Moguilevsky, J. A., Kalbermann, L. E., Libertun, C., & Gomez, C. J. Effects of ovariectomy on the amino acid incorporation into proteins of anterior pituitary and hypothalamus of rats. Proceedings of the Society of Experimental Biology and Medicine, 1971, 136, 1115–1118.Google Scholar
  192. Moguilevsky, J. A., Schiaffini, O., Szwarcfarb, B., & Libertun, C. Metabolic evidences of the short feed back mechanism controlling LH and FSH secretion. Acta Endocrinologica Panamericana, 1971, 2, 177–186.Google Scholar
  193. Moguilewsky, M., & Raynaud, J.-P. Estrogen-sensitive progestin-binding sites in the female rat brain and pituitary. Brain Research, 1979, 164, 165–175. (a)PubMedCrossRefGoogle Scholar
  194. Moguilewsky, M., & Raynaud, J.-P. The relevance of hypothalamic and hypophyseal progestin receptor regulation in the induction and inhibition of sexual behavior in the female rat. Endocrinology, 1979, 104, 516–522. (b)CrossRefGoogle Scholar
  195. Moguilewsky, M., & Raynaud, J.-P. Evidence for a specific mineralocorticoid receptor in rat pituitary and brain. Journal of Steroid Biochemistry, 1980, 12, 309–314.PubMedCrossRefGoogle Scholar
  196. Monbon, M., Loras, B., Reboud, J. P., & Bertrand, J. Binding and metabolism of testosterone in the rat brain during sexual maturation: I. Macromolecular binding of androgens. Journal of Steroid Biochemistry, 1974, 5, 417–424.PubMedCrossRefGoogle Scholar
  197. Moore, K. E., & Phillipson, O. T. Effects of dexamethasone on phenylethanolamine N-methyltrans- ferase and adrenaline in the brains and superior cervical ganglia of adult and neonatal rats. Journal of Neurochemistry, 1975, 25, 289–294.PubMedCrossRefGoogle Scholar
  198. Morrell, J. I., & Pfaff, D. W. A neuroendocrine approach to brain function: Localization of sex steroid concentrating cells in vertebrate brains. American Zoologist, 1978, 18, 447–460.Google Scholar
  199. Mosebach, K.-O., & Peter, H.-G. Early influences of testosterone and 19-nortestosterone on the metabolism of L-histidine-14C in the brain of immature male rats. Acta Endocrinologica, 1971, Supplement 155, 28.Google Scholar
  200. Motta, M. The endocrine functions of the brain. New York: Raven Press, 1980.Google Scholar
  201. Moudgil, V. K., & Kanungo, M. S. Effect of age of the rat on induction of acetylcholinesterase of the brain by 17’-estradiol. Biochemica et Biophysica Acta, 1973, 329, 211–220.Google Scholar
  202. Munaro, N. I. The effect of ovarian steroids on hypothalamic 5-hydroxy-tryptamine neuronal activity. Neuroendocrinology, 1978, 26, 270–276.PubMedCrossRefGoogle Scholar
  203. Murayama, A., Fukai, F., & Yamamoto, T. Disorganization and in vitro assembly of the constituents of the cytoplasmic estrogen receptor system of cow uterus. Journal of Biochemistry, 1980, 88, 1457–1466.PubMedGoogle Scholar
  204. Muth, E. A., Crowley, W. R., & Jacobowitz, D. M. Effect of gonadal hormones on luteinizing hormone in plasma and on choline acetyltransferase activity and acetylcholine levels in discrete nuclei of rat brain. Neuroendocrinology, 1980, 30, 329–336.PubMedCrossRefGoogle Scholar
  205. Nagle, C. A., & Rosner, J. M. Rat brain norepinephrine release during progesterone-induced LH secretion. Neuroendocrinology, 1980, 30, 33–37.PubMedCrossRefGoogle Scholar
  206. Neckers, L., & Sze, P. Y. Regulation of 5-hydroxytryptamine metabolism in mouse brain by adrenal glucocorticoids. Brain Research, 1976, 93, 123–132.CrossRefGoogle Scholar
  207. Nemeroff, C. B., & Dunn, A. J. (Eds.). Peptides, hormones and behavior: Molecular and behavioral neuroendocrinology. New York: Spectrum Publications, 1983.Google Scholar
  208. Nixon, R. L., Janowsky, D. S., & Davis, J. M. Effects of progesterone, β-estradiol, and testosterone on the uptake and metabolism of 3H-norepinephrine, 3H-dopamine and 3H-serotonin in rat brain synaptosomes. Research Communications in Chemical Pathology and Pharmacology, 1974, 7, 233–236.PubMedGoogle Scholar
  209. Nock, B., Blaustein, J. D., & Feder, H. H. Changes in noradrenergic transmission alter the concentration of cytoplasmic progestin receptors in hypothalamus. Society for Neuroscience Abstracts, 1980, 6, 31.Google Scholar
  210. Nyakas, C., de Kloet, E. R., & Bohas, B. Hippocampal function and putative corticosterone receptors: Effects of septal lesions. Neuroendocrinology, 1979, 29, 301–312.PubMedCrossRefGoogle Scholar
  211. Orr, E., & Quay, W. The effects of castration on histamine levels and 24-hour rhythm in the male rat hypothalamus. Endocrinology, 1975, 97, 481–484.PubMedCrossRefGoogle Scholar
  212. Packman, P. M., Bragdon, M. J., & Boshans, R. L. Quantitative histochemical studies of the hypothalamus: Control point enzymes during the estrous cycle. Neuroendocrinology, 1977, 23, 76–87.PubMedCrossRefGoogle Scholar
  213. Pandolfo, L., & Macaione, S. Effect of adrenalectomy on activity of GAB A transaminase and glutamic acid decarboxylase from rat brain cortex. Italian Journal of Biochemistry, 1964, 13, 247–252.Google Scholar
  214. Paolo, T. D., Labrie, F., Dupont, A., Barden, N., & Langelier, P. Effects of estrogen treatment on normal and sensitized rat striatal dopamine (DA) receptors and DA-sensitive adenylyl cyclase. Society for Neuroscience Abstracts, 1979, 5, 1495.Google Scholar
  215. Pardridge, W. M., & Mietus, L. J. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. Journal of Clinical Investigation, 1979, 64, 145–154.PubMedCrossRefGoogle Scholar
  216. Pardridge, W. M., & Mietus, L. J. Effects of progesterone-binding globulin versus a progesterone antiserum on steroid hormone transport through the blood-brain barrier. Endocrinology, 1980, 106, 1137–1141.PubMedCrossRefGoogle Scholar
  217. Parsons, B., MacLusky, N. J., Krey, L., Pfaff, D. W., & McEwen, B. S. The temporal relationship between estrogen-inducible progestin receptors in the female rat brain and the time course of estrogen activation of mating behavior, Endocrinology, 1980, 107, 774–779.PubMedCrossRefGoogle Scholar
  218. Paul, S. M., & Skolnick, P. Catechol oestrogens inhibit oestrogen elicited accumulation of hypothalamic cyclic AMP suggesting role as endogenous anti-oestrogens. Nature, 1977, 266, 559–561.PubMedCrossRefGoogle Scholar
  219. Paul, S. M., Axelrod, J., Saavedra, J. M., & Skolnick, P. Estrogen-induced efflux of endogenous catecholamines from the hypothalamus in vitro. Brain Research, 1979, 178, 499–505.PubMedCrossRefGoogle Scholar
  220. Paul, S. M., Hoffman, A. R., & Axelrod, J. Catechol estrogens: Synthesis and metabolism in brain and other tissues. In L. Martini & W. F. Ganong (Eds.), Frontiers in neuroendocrinology (Vol. 6). New York: Raven Press, 1980.Google Scholar
  221. Peck, E. J., Jr., Miller, A. L., & Keiner, K. L. Estrogen receptors and the activation of RNA polymerase by estrogens in the central nervous system. In T. H. Hamilton, J. H. Clark, & W. A. Sandler (Eds.), Ontogeny of receptors and reproductive hormone action. New York: Raven Press, 1979.Google Scholar
  222. Perry, B. N., & Lopez, T. A. The binding of 3H-labelled oestradiol- and progesterone-receptor complexes to hypothalamic chromatin of male and female sheep. Biochemical Journal, 1978, 176, 873–883.PubMedGoogle Scholar
  223. Pfaff, D. W., & Keiner, M. Atlas of estradiol-concentrating cells in the central nervous system of the female rat. Journal of Comparative Neurology, 1973, 151, 121–158.PubMedCrossRefGoogle Scholar
  224. Pfaff, D. W., & Modianos, D. Neural mechanisms of female reproductive behavior. In N. T. Adler & D. Pfaff (Eds.), Neurobiology of reproduction. Book in preparation, 1983.Google Scholar
  225. Portaleone, P., Pagnini, G., Crispino, A., & Genazzani, E. Histamine-sensitive adenylate cyclase in hypothalamus of rat brain: H1 and H2 receptors. Journal of Neurochemistry, 1978, 31, 1371–1374.PubMedCrossRefGoogle Scholar
  226. Portaleone, P., Genazzani, E., Pagnini, G., Crispino, A., & DiCarlo, F. Interaction of estradiol and 2- hydroxy-estradiol with histamine receptors at hypothalamic level. Brain Research, 1980, 187, 216–220.PubMedCrossRefGoogle Scholar
  227. Puca, G. A., Nola, E., Hibner, U., Cicala, G., & Sica, V. Interaction of the estradiol receptor from calf uterus with its nuclear acceptor sites. Journal of Biological Chemistry, 1975, 250, 6452–6459.PubMedGoogle Scholar
  228. Rainbow, T. C., Davis, P. G., & McEwen, B. S. Anisomycin inhibits the activation of sexual behavior by estradiol and progesterone. Brain Research, 1980, 194, 548–555.PubMedCrossRefGoogle Scholar
  229. Rastogi, R. B., & Singhal, R. L. Evidence for the role of adrenocortical hormones in the regulation of noradrenaline and dopamine metabolism in certain brain areas. British Journal of Pharmacology, 1978, 62, 131–136. (a)PubMedGoogle Scholar
  230. Rastogi, R. B., & Singhal, R. L. Adrenocorticoids control 5-hydroxytryptamine metabolism in rat brain. Journal of Neural Transmission, 1978, 42, 63–71. (b)PubMedCrossRefGoogle Scholar
  231. Raynaud, J. P. R5020, a tag for the progestin receptor. In W. L. McGuire, J. P. Raynaud, & E. E. Baulieu (Eds.), Progesterone receptors in normal and neoplastic tissues. New York: Raven Press, 1977.Google Scholar
  232. Reddy, V. V. R. Estriol synthesis in rat brain and pituitary. Brain Research, 1979, 175, 165–168. (a)PubMedCrossRefGoogle Scholar
  233. Reddy, V. V. R. Estrogen metabolism in neural tissues of rabbits: 17’-hydroxysteroid oxidoreductase activity. Steroids, 1979, 34, 207–215. (b)PubMedCrossRefGoogle Scholar
  234. Rees, H. D., & Gray, H. E. Glucocorticoids and mineralocorticoids: actions on brain and behavior. In C. B. Nemeroff & A. J. Dunn (Eds.), Peptides, hormones and behavior: Molecular and behavioral neuroendocrinology. New York: Spectrum Publications, 1983.Google Scholar
  235. Rees, H. D., Stumpf, W. E., & Sar, M. Autoradiographic studies with 3H-dexamethasone in the rat brain and pituitary. In W. E. Stumpf & L. D. Grant (Eds.), Anatomical neuroendocrinology. Basel: Karger, 1975.Google Scholar
  236. Reiss, N., & Kaye, A. M. Separation of a protein from rat brain resembling the uterine “estrogen- induced protein” in electrophoretic and immunologic properties. Israel Journal of Medicine, 1979, 15, 545.Google Scholar
  237. Reiter, R. J. The pineal and its hormones in the control of reproduction in mammals. Endocrine Reviews, 1980, 1, 109–131.PubMedCrossRefGoogle Scholar
  238. Rezek, D. L. Nuclear localization of testosterone, dihydrotestosterone and estradiol- 17’ in basal rat brain. Psychoneuroendocrinology, 1977, 2, 173–178.PubMedCrossRefGoogle Scholar
  239. Rhees, R. W., Grosser, B. I., & Stevens, W. The autoradiographic localization of [3H]dexamethasone in the brain and pituitary of the rat. Brain Research, 1975, 100, 151–156.PubMedCrossRefGoogle Scholar
  240. Ricker, D. K., Sastre, A., Baker, T., Roth, R. H., & Riker, W. F. Regional high-affinity [3H]choline accumulation in cat forebrain: Selective increase in the caudate-putamen after corticosteroid pretreatment. Molecular Pharmacology, 1979, 16, 886–899.Google Scholar
  241. Roberts, E., Chase, T. N., & Tower, D. B. GABA in nervous system function. New York: Raven Press, 1976.Google Scholar
  242. Rosner, J. M., Denari, J. H., Castro-Vazquez, A., Nagle, C. A., Neuspiller, M. R., Bedes, G. D. D. P., Pedroza, E., Martin, J. L., & Gomez, E. Oestrogen uptake by the central nervous system. Gynecological Investigation, 1972, 3, 30–42.CrossRefGoogle Scholar
  243. Roy, E. J., & McEwen, B. S. Oestrogen receptors in cell nuclei of the hypothalamus-preoptic area-amygdala following an injection of oestradiol or the antioestrogen CI-628. Journal of Endocrinology, 1979, 83, 285–293.PubMedCrossRefGoogle Scholar
  244. Roy, E. J., Schmit, E., McEwen, B. S., & Wade, G. N. Anti-estrogens in the central nervous system. In M. K. Agarwal (Ed.), Antihormones. Amsterdam: Elsevier-North Holland Biomedical Press, 1979.Google Scholar
  245. Russell, D. H. Ornithine decarboxylase as a biological and pharmacological tool. Pharmacology, 1980, 20, 117–129.PubMedCrossRefGoogle Scholar
  246. Saad, S. F. The effect of ovariectomy on the γ-aminobutyric acid content in the cerebral hemispheres of young rats. Journal of Pharmacy and Pharmacology, 1970, 22, 307.PubMedCrossRefGoogle Scholar
  247. Sadasivudu, B., Rao, T. I., & Murphy, C. R. K. Metabolic effects of hydrocortisone in mouse brain. Neurochemical Research, 1977, 2, 521–532.CrossRefGoogle Scholar
  248. Saffran, J., & Loeser, B. K. Nuclear binding of guinea pig uterine progesterone receptor in cell- free preparations. Journal of Steroid Biochemistry, 1979, 10, 43–51.PubMedCrossRefGoogle Scholar
  249. Sakaue, Y., & Thompson, E. B. Characterization of two forms of glucocorticoid hormone-receptor complex separated by DEAE-cellulose column chromatography. Biochemical and Biophysical Research Communications, 1977, 77, 533–541.PubMedCrossRefGoogle Scholar
  250. Sando, J. J., Hammond, N. D., Stratford, C. A., & Pratt, W. B. Activation of thymocyte glucocorticoid receptors to the steroid binding form. Journal of Biological Chemistry, 1979, 254,4779–4789.PubMedGoogle Scholar
  251. Sando, J. J., LaForest, A. C., & Pratt, W. B. ATP-Dependent activation of L cell glucocorticoid receptors to the steroid binding form. Journal of Biological Chemistry, 1979, 254, 4772–4778.PubMedGoogle Scholar
  252. Sar, M., & Stumpf, W. E. Androgen concentration in motor neurons of cranial nerves and spinal cord. Science, 1977, 197, 77–79.PubMedCrossRefGoogle Scholar
  253. Sato, B., Noma, K., Nishizawa, Y., Nakao, K., Matsumoto, K., & Yamamura, Y. Mechanism of activation of steroid receptors: Involvement of low molecular weight inhibitor in activation of androgen, glucocorticoid, and estrogen receptor systems. Endocrinology, 1980, 106, 1142–1148.PubMedCrossRefGoogle Scholar
  254. Scacchi, P., Moguilevsky, J. A., & Szwarcfarb, B. Effect of castration on C1402 production from glucose-U-C14 in the hypothalamus and cerebral cortex. Proceedings of the Society of Experimental Biology and Medicine, 1971, 136, 1068–1071.Google Scholar
  255. Scacchi, P., Moguilevsky, J. A., & Schiaffini, O. Glucose oxidation in the hypothalamus during the sexual cycle in rats: Influence of castration. Neuroendocrinology, 1973, 11, 321–327.PubMedCrossRefGoogle Scholar
  256. Schaeffer, J. M., & Hseuh, A. J. W. 2-Hydroxyestradiol interaction with dopamine receptor binding in rat anterior pituitary. Journal of Biological Chemistry, 1979, 254, 5606–5608.PubMedGoogle Scholar
  257. Schaeffer, J. M., Stevens, S. R., & Smith, R. G. 2-Hydroxyestradiol (2-OH-E2) binding to rat anterior pituitary membranes. Endocrine Society Abstracts, 1980, 106, 317.Google Scholar
  258. Scheff, S. W., Thorne, D. R., Sasvary, G., Bernardo, L. S., & Cotman, C. W. Chronic glucocorticoid administration alters axonal sprouting in the rat hippocampal formation. Society for Neuroscience Abstracts, 1979, 5, 1555.Google Scholar
  259. Schiaffini, O., & Marin, B. Effect of ovariectomy on the oxidative activity of the hypothalamus and of the limbic system of the rat. Neuroendocrinology, 1971, 7, 302–307.PubMedCrossRefGoogle Scholar
  260. Schiaffini, O., & Martini, L. The amygdala and the control of gonadotrophin secretion. Acta Endocrinologica, 1972, 70, 209–219.PubMedGoogle Scholar
  261. Schiaffini, O., Moguilevsky, J. A., Libertun, C., & Foglia, V. G. Oxidative and glycolytic metabolism of different hypothalamic areas in diabetic rat. Acta Physiologica Latino Americana, 1968, 18, 257–262.PubMedGoogle Scholar
  262. Schiaffini, O., Marin, B., & Foglia, V. G. Metabolic alterations in hypothalamus and limbic structures in female diabetic rats. Experientia, 1970, 26, 610–611.PubMedCrossRefGoogle Scholar
  263. Schwartz, J. -C., Pollard, H., & Quach, T. T. Histamine as a neurotransmitter in mammalian brain: Neurochemical evidence. Journal of Neurochemistry, 1980, 35, 26–33.PubMedCrossRefGoogle Scholar
  264. Seiki, K., Haruki, Y., Imanishi, Y., & Enomoto, T. Further evidence of the presence of progesterone- binding proteins in female rat hypothalamus. Endocrinologia Japonica, 1977, 24, 233–238.PubMedCrossRefGoogle Scholar
  265. Seiki, K., Haruki, Y., Imanishi, Y., & Enomoto, T. Progestin binding in vitro by brain cell nuclei of ovariectomized oestrogen-primed rats. Journal of Endocrinology, 1979, 82, 347–360.PubMedCrossRefGoogle Scholar
  266. Selmanoff, M. K., Brodkin, L. D., Weiner, R. J., & Siiteri, P. Aromatization and 5a-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology, 1977, 101, 841–848.PubMedCrossRefGoogle Scholar
  267. Shani, J., Givant, Y., Sulman, F., Eylath, U., & Eckstein, B. Competition of phenothazines with oestradiol receptors in the brain. Neuroendocrinology, 1971, 8, 307–316.PubMedCrossRefGoogle Scholar
  268. Shen, G., Thrower, S., & Lim, L. Uterine oestrogen-receptor binding to oligo(dT)-cellulose: An inhibitor from hypothalamic cytosol. Biochemical Journal, 1979, 182, 241–243.PubMedGoogle Scholar
  269. Shen, J. T., & Ganong, W. F. Effect of variations in adrenocortical function on dopamine β-hy-droxylase and norepinephrine in the brain of the rat. Journal of Pharmacology and Experimental Therapeutics, 1976, 199, 639–648.PubMedGoogle Scholar
  270. Sheridan, P. J. The nucleus interstitialis striae terminalis and the nucleus amygdaloideus medialis: Prime targets for androgen in the rat forebrain. Endocrinology, 1979, 104, 130–136.PubMedCrossRefGoogle Scholar
  271. Siegel, L. I., & Wade, G. N. Insulin withdrawal impairs sexual receptivity and retention of brain cell nuclear estrogen receptors in diabetic rats. Neuroendocrinology, 1979, 29, 200–206.PubMedCrossRefGoogle Scholar
  272. Simpkins, J. W., Kalra, P. S., & Kalra, S. P. Effects of testosterone on catecholamine turnover and LHRH contents in the basal hypothalamus and preoptic area. Neuroendocrinology, 1980, 30, 94–100.PubMedCrossRefGoogle Scholar
  273. Stevens, W., Reed, D. J., Erickson, S., & Grosser, B. I. The binding of corticosterone to brain proteins: Diurnal variation. Endocrinology, 1973, 93, 1152–1156.PubMedCrossRefGoogle Scholar
  274. Stipek, S., Crkovska, J., Trojan, S., & Prokes, J. The effects of polyamines on RNA synthesis in cell nuclei isolated from the rat brain. Physiologica Bohemoslovaca, 1978, 27, 280–281.Google Scholar
  275. Stith, R. D., & Bottoms, G. D. Intracellular binding of [3H]cortisol and its effect on RNA polymerase activity in hypothalamus of the pig. Brain Research, 1972, 41, 423–434.PubMedCrossRefGoogle Scholar
  276. Stith, R. D., Person, R. J., & Dana, R. C. Effects of hippocampal and amygdalar stimulation on the uptake and binding of 3H-hydrocortisone in the hypothalamus of the cat. Journal of Neuroscience Research, 1976, 2, 317–322.PubMedCrossRefGoogle Scholar
  277. Stumpf, W. E., & Grant, L. D. Anatomical neuroendocrinology. Basel: Karger, 1975.Google Scholar
  278. Stumpf, W. E., & Sar, M. Anatomical distribution of estrogen, androgen, progestin, corticosteroid and thyroid hormone target sites in the brain of mammals: Phylogeny and ontogeny. American Zoologist, 1978, 18, 435–445.Google Scholar
  279. Stumpf, W. E., & Sar, M. Steroid action in CNS and anterior pituitary: I. Steroid hormone target cells in the extrahypothalamic brain stem and cervical spinal cord: Neuroendocrine significance. Journal of Steroid Biochemistry, 1979, 11, 801–807.PubMedCrossRefGoogle Scholar
  280. Sundberg, D. K., Fawcett, C. P., & McCann, S. M. The involvement of cyclic-3’, 5’AMP in the release of hormones from the anterior pituitary in vitro. Proceedings of the Society of Experimental Biology and Medicine, 1976, 151, 149–154.Google Scholar
  281. Sze, P. Y., Neckers, L., & Towle, A. C. Glucocorticoids as a regulatory factor for brain tryptophan hydroxylase. Journal of Neurochemistry, 1976, 26, 169–173.PubMedGoogle Scholar
  282. Tappaz, M. L., Brownstein, M. J., & Kopin, I. J. Glutamate decarboxylase (GAD) and γ-aminobutyric acid (GABA) in discrete nuclei of hypothalamus and substantia nigra. Brain Research, 1977, 125, 109–121.PubMedCrossRefGoogle Scholar
  283. Teyler, T. J., Vardaris, R. M., Lewis, D., & Rawitch, A. B. Gonadal steroids: Effects on excitability of hippocampal pyramidal cells. Science, 1980, 209, 1017–1019.PubMedCrossRefGoogle Scholar
  284. Thrower, S., & Lim, L. Characterization of rat hypothalamic progestin binding by spheroidal hydrox- ylapatite chromatography. Biochemical Journal, 1980, 186, 295–300.PubMedGoogle Scholar
  285. Tintner, R., Dunn, A. J., Iuvone, P. M., Shukla, J. B., & Rennert, O. M. Corticotrophin increases cerebral polyamine content. Journal of Neurochemistry, 1979, 33, 1067–1073.PubMedCrossRefGoogle Scholar
  286. Tobias, H., Carr, L., & Vooft, J. Effects of estradiol on catecholamine synthesizing enzymes, luteinizing hormone (LH) and prolactin in the ovariectomized rat. Society for Neuroscience Abstracts, 1979, 5, 1569.Google Scholar
  287. Towle, A. C., & Sze, P. Y. Binding of corticosterone to synaptic plasma membrane from rat brain. Society for Neuroscience Abstracts, 1978, 4, 356.Google Scholar
  288. Towle, A. C., Sze, P. Y., & Lauder, J. M. Cytosol glucocorticoid receptors in monoaminergic cell groups. Transactions of the American Society of Neurochemistry, 1979, 10, 199.Google Scholar
  289. Traish, A. M., Muller, R. E., & Wotiz, H. H. Binding of estrogen receptor to uterine nuclei: Salt-extractable versus salt-resistant receptor estrogen complexes. Journal of Biological Chemistry, 1977, 252, 6823–6830.PubMedGoogle Scholar
  290. Tsuboi, S., Kawashima, R., Tomioka, O., Nakata, M., Sakamoto, N., & Fujita, T. Glucocorticoid binding proteins of human brain cytosol. Brain Research, 1979, 179, 181–185.PubMedCrossRefGoogle Scholar
  291. Turner, B. B., & McEwen, B. S. Hippocampal cytosol binding capacity of corticosterone: No depletion with nuclear loading. Brain Research, 1980, 189, 169–182.PubMedCrossRefGoogle Scholar
  292. Turner, B. B., Smith, E. M., & Carroll, B. J. Baboon corticosterone: Substantial brain binding of a ‘minor’ adrenal glucocorticoid. Society for Neuroscience Abstracts, 1979, 5, 462.Google Scholar
  293. Ulrich, R., Yuwiler, A., & Geller, E. Effects of hydrocortisone on biogenic amine levels in the hypothalamus. Neuroendocrinology, 1975, 19, 259–268.PubMedCrossRefGoogle Scholar
  294. Vacas, M. I., & Cardinali, D. P. Effect of estradiol on a- and β-adrenoceptor density in medial basal hypothalamus, cerebral cortex and pineal gland of ovariectomized rats. Neuroscience Letters, 1980, 17, 73–77.PubMedCrossRefGoogle Scholar
  295. Veals, J. W., Korduba, C. A., & Symchowicz, S. Effect of dexamethasone on monoamine oxidase inhibition by iproniazid in rat brain. European Journal of Pharmacology, 1977, 41, 291–299.PubMedCrossRefGoogle Scholar
  296. Verdiere, M., Rose, C., & Schwartz, J. C. Turnover of central histamine in a stressful situation. Brain Research, 1977, 129, 107–119.PubMedCrossRefGoogle Scholar
  297. Vermes, I., Telegdy, G., & Lissak, K. Correlation between hypothalamic serotonin content and adrenal function during acute stress. Effect of adrenal corticosteroids on hypothalamic serotonin content. Acta Physiologica Academiae Scientiarum Hungaricae, 1973, 43, 33–42.PubMedGoogle Scholar
  298. Vermes, I., Varszegi, M., Toth, E. K., & Telegdy, G. Action of androgenic steroids on brain neurotransmitters in rats. Neuroendocrinology, 1979, 28, 386–393.PubMedCrossRefGoogle Scholar
  299. Vertes, A., Vertes, M., & Kovacs, S. Hypothalamic effect of oestradiol. Acta Physiologica Academiae Scientiarum Hungaricae, 1978, 51, 218–219.Google Scholar
  300. Walker, M. D., Negreanu, V., Gozes, I., & Kaye, A. M. Identification of the ‘estrogen-induced protein’ in uterus and brain of untreated immature rats. FEBS Letters, 1979, 98, 187–191.PubMedCrossRefGoogle Scholar
  301. Wallis, C. J. Neuroendocrine influences on gamma-aminobutyric acid metabolism in rodent brain tissue. Unpublished doctoral dissertation, University of Florida, 1976.Google Scholar
  302. Wallis, C. J., & Luttge, W. G. Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat brain. Journal of Neurochemistry, 1980, 34, 609–613.PubMedCrossRefGoogle Scholar
  303. Wallis, C. J., & Printz, M. P. Adrenal regulation of regional brain angiotensinogen content. Endocrinology, 1980, 106, 337–342.PubMedCrossRefGoogle Scholar
  304. Warembourg, M. Radioautographic study of the rat brain after injection of [l,2-3H]corticosterone. Brain Research, 1975, 89, 61–70. (a)PubMedCrossRefGoogle Scholar
  305. Warembourg, M. Radioautographic study of the rat brain and pituitary after injection of 3H-dex- amethasone. Cell and Tissue Research, 1975, 161, 183–191. (b)PubMedCrossRefGoogle Scholar
  306. Warembourg, M. Fixation des steroides au niveau du systeme nerveux central et de l’hypophyse chez differents mammiferes. Annales d’Endocrinologie (Paris), 1977, 38, 41–54.PubMedGoogle Scholar
  307. Warembourg, M. Radioautographic study of the rat brain, uterus and vagina after [3H]R-5020. Molecular and Cellular Endocrinology, 1978, 12, 67–79.PubMedCrossRefGoogle Scholar
  308. Watson, G. H., & Muldoon, T. G. Microsomal estrogen receptors in rat uterus and anterior pituitary. Federation Proceedings, 1977, 36, 912.Google Scholar
  309. Weichman, B. M., & Notides, A. C. Analysis of estrogen receptor activation by its [3H]estradiol dissociation kinetics. Biochemistry, 1979, 18, 220–225.PubMedCrossRefGoogle Scholar
  310. Weichman, B. M., & Notides, A. C. Estrogen receptor activation and the dissociation kinetics of estradiol, estriol and estrone. Endocrinology, 1980, 106, 434–439.PubMedCrossRefGoogle Scholar
  311. Weidenfeld, J., Siegel, R. A., & Chowers, I. In vitro conversion of pregnenolone to progesterone by discrete brain areas of the male rat. Journal of Steroid Biochemistry, 1980, 13, 961–963.PubMedCrossRefGoogle Scholar
  312. Weissman, B. A., & Johnson, D. F. Possible role of dopamine in diethylstilbestrol-elicited accumulation of cyclic AMP in incubated male rat hypothalamus. Neuroendocrinology, 1976, 21, 1–9.PubMedCrossRefGoogle Scholar
  313. Weissman, B. A., & Skolnick, P. Stimulation of adenosine 3’,5’-monophosphate formation in incubated rat hypothalamus by estrogenic compounds: Relationship to biologic potency and blockade by anti-estrogens. Neuroendocrinology, 1975, 18, 27–34.PubMedCrossRefGoogle Scholar
  314. Weissman, B. A., Daly, J. W., & Skolnick, P. Deithylstilbestrol-elicited accumulation of cyclic AMP in incubated rat hypothalamus. Endocrinology, 1975, 97, 1559–1566.PubMedCrossRefGoogle Scholar
  315. Whalen, R. E., & Olsen, K. L. Chromatin binding of estradiol in the hypothalamus and cortex of male and female rats. Brain Research, 1978, 152, 121–131.PubMedCrossRefGoogle Scholar
  316. Whalen, R. E., Yahr, P., & Luttge, W. G. Hormones, metabolism and sexual behavior. In N. T. Adler & D. Pfaff (Eds.), Neurobiology of reproduction. Book in preparation, 1983.Google Scholar
  317. White, J. O., & Lim, L. Unoccupied nuclear oestrogen receptors in the female rat hypothalamus. Increases on oestrogen administration. Biochemical Journal, 1980, 190, 833–837.PubMedGoogle Scholar
  318. White, J. O., Thrower, S., & Lim, L. Intracellular relationships of the oestrogen receptor in the rat uterus and hypothalamus during the oestrous cycle. Biochemical Journal, 1978, 172, 37–47.PubMedGoogle Scholar
  319. Wilkinson, M., Herdon, H., Pearce, M., & Wilson, C. Radioligand binding studies on hypothalamic noradrenergic receptors during the estrous cycle or after steroid injection in ovariectomized rats. Brain Research, 1979, 168, 652–655.PubMedCrossRefGoogle Scholar
  320. Williams, M. Protein phosphorylation in the mammalian nervous system. Trends in Biochemical Science, 1979, 4, 25–28.CrossRefGoogle Scholar
  321. Wilson, E. M., & French, F. S. Effects of proteases and protease inhibitors on the 4.5S and 8S androgen receptor. Journal of Biological Chemistry, 1979, 254, 6310–6319.PubMedGoogle Scholar
  322. Wrange, O. A comparison of the glucocorticoid receptor in cytosol from rat liver and hippocampus. Biochimica et Biophysica Acta, 1979, 582, 346–357.PubMedGoogle Scholar
  323. Yagi, K., & Sawaki, Y. Recurrent inhibition and facilitation. Demonstration in the tuberinfundibular system and effects of strychnine and picrotoxin. Brain Research, 1975, 84, 155–159.PubMedCrossRefGoogle Scholar
  324. Yamamoto, K. R. Characterization of the 4S and 5S forms of the estradiol receptor protein and their interaction with deoxyribonucleic acid. Journal of Biological Chemistry, 1974, 249, 7068–7075.PubMedGoogle Scholar
  325. Zava, D. T., & McGuire, W. L. Estrogen receptor: Unoccupied sites in nuclei of breast tumor cell line. Journal of Biological Chemistry, 1977, 252, 3703–3708.PubMedGoogle Scholar
  326. Zigmond, R. E., & McEwen, B. S. Selective retention of oestradiol by cell nuclei in specific brain regions of the ovariectomized rat. Journal of Neurochemistry, 1970, 17, 889–899.PubMedCrossRefGoogle Scholar
  327. Zolovick, A. J., Pearse, R., Boehlke, K. W., & Eleftheriou, B. E. Monoamine oxidase activity in various parts of the rat brain during the estrous cycle. Science, 1966, 154, 649.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • William G. Luttge
    • 1
  1. 1.Department of Neuroscience and Center for Neurobiological SciencesUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations