Surfactant-Polymer Interactions in Tertiary Oil Recovery

  • R. Nagarajan
  • Michael P. Harold


Dilute aqueous surfactant and polymer solutions are used to displace the trapped oil from the porous reservoirs in the tertiary recovery process, by virtue of their interfacial tension lowering and mobility control characteristics, respectively. The interactions that occur between the surfactant and the polymer solutions, however, lead to the formation of a polymer-surfactant complex and phase separation thus resulting in the loss of the chemicals and the modification of the designed solution properties of the surfactant and of the polymer. For the purpose of characterizing apriori, the type of polymer suitable for the tertiary recovery process, a simple model is developed here to predict the extent of the surfactant binding to the polymers in dilute aqueous solution. The model is based on the premise that the intra-molecular contacts between the polar and the non-polar segments of the polymer can be visualized as the analogs of the macroscopic hydrocarbon-polar medium interface, where preferential accumulation of the surfactant molecules occurs. The surfactant binding to the polymer is described by the multiple equilibria model commonly used to describe the protein-ligand interactions.


Critical Micelle Concentration Surfactant Concentration Surfactant Molecule Hydrophobic Segment Micellization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Trushenski, AIChE Improved Oil Recovery Symposium, Kansas City, April 13–14, 1976.Google Scholar
  2. 2.
    S. Trushenski, Soc. Pet. Eng. J. L4, 633 (1974).Google Scholar
  3. 3.
    M. T. Szabo, Soc. Pet. Eng. J. 191, 4 (1979).Google Scholar
  4. 4.
    J. Steinhardt and J. A. Reynolds,“Multiple Equilibria in Proteins” Academic Press, New York, 1969.Google Scholar
  5. 5.
    H. Yamakawa, “Modern Theory of Polymer Solutions” Harper and Row, New York, 1971.Google Scholar
  6. 6.
    J. Pouchly, A. Zivny and A. Sikora, J. Polymer Sci. A-2 10, 151 (1972).Google Scholar
  7. 7.
    J. Pouchly, A. Zivny and A. Sikora, J. Polymer Sci. C 39, 133 (1972).Google Scholar
  8. 8.
    R. Nagarajan and E. Ruckenstein, J. Colloid Interface Sci. 60, 221 (1977).CrossRefGoogle Scholar
  9. 9.
    R. Nagarajan and E. Ruckenstein, J. Colloid Interface Sci. 71, 580 (1979).CrossRefGoogle Scholar
  10. 10.
    W. R. Krigbaum and P. J. Flory, J. Chem. Phys. 20, 873 (1952).CrossRefGoogle Scholar
  11. 11.
    T. A. Orfino and P. J. Flory, J. Chem. Phys. 26, 1067 (1957).CrossRefGoogle Scholar
  12. 12.
    I. D. Robb and M. M. Breuer, Chemistry and Industry 13, 531 (1972).Google Scholar
  13. 13.
    H. Arai and S. Horin, J. Colloid Interface Sci. 30, 372 (1969)CrossRefGoogle Scholar
  14. 14.
    S. Saito, J. Colloid Interface Sci. 24, 227 (1967).CrossRefGoogle Scholar
  15. 15.
    K. E. Lewis and C. P. Robinson, J. Colloid Interface Sci. 32, 539 (1970).CrossRefGoogle Scholar
  16. 16.
    S. Saito, Tenside Detergents 6, 113 (1977).Google Scholar
  17. 17.
    M. N. Jones, J. Colloid Interface Sci. 213, 36 (1967).Google Scholar
  18. 18.
    M. L. Smith and N. Muller, J. Colloid Interface Sci. 52, 507 (1975).CrossRefGoogle Scholar
  19. 19.
    E. D. Goddard and R. B. Hannan, in “Micellization, Solubilization and Microemulsions”, K. L. Mittal, Editor, PlenumGoogle Scholar
  20. 20.
    B. Cabane, J. Phys. Chem. 81, 1639 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. Nagarajan
    • 1
  • Michael P. Harold
    • 1
  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations