Skip to main content

Dynamics of Microemulsions

  • Chapter
Solution Behavior of Surfactants

Abstract

A number of informations on the dynamics of microemulsions have been obtained in the recent years through direct studies (NMR, fluorescence, chemical relaxation) as well as indirect studies (rate of chemical reactions in microemulsions; rate of dissolution of oil and water by microemulsions). This paper is a review of studies dealing with: (1) local motions of the surfactant and cosurfactant; (2) exchange of the microemulsion components between the interfacial film and the bulk and/or the dispersed phase (surfactant and cosurfactant) or between “free” and “bound” states (counterions in the case of ionic surfactants, and water); and (3) processes involving the whole microemulsion droplets (rate of collision, fusion and fission of these droplets). The picture of microemulsions which emerges from these studies is that of very labile structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Zana, “Chemical and Biological Applications of Relaxation Spectrometry”, E. Wyn-Jones,Ed., D. Reidel Publ. Co., 1975, p. 133.

    Google Scholar 

  2. E.A.G. Aniansson, S. Wall, M. Almgren, H. Hoffmann, I. Kielmann, W. Ulbricht, R. Zana, J. Lang and C. Tondre, J. Phys. Chem., 80, 905 (1976).

    Article  Google Scholar 

  3. H. Hoffmann, Prog. Colloid Polymer Sci., 65, 140 (1978).

    Article  Google Scholar 

  4. M. Kahlweit and M. Teubner, Adv. Colloid Interface Sci., 13, 1 (1980).

    Article  Google Scholar 

  5. H. Uehara, J. Sci. Hiroshima Univ. Ser. A, 40, 305 (1976).

    Google Scholar 

  6. T. Inoue, Y. Shibuya and R. Shimozawa, J. Colloid Interface Sci., 65, 370 (1978).

    Article  Google Scholar 

  7. U. Herrmann and M. Kahlweit, Ber. Bunsenges. Phys. Chem., 77, 1119 (1973).

    Google Scholar 

  8. T. Inome, R. Tashiro, R. Shimozawa and R. Matuura, Mem. Fac. Sci. Kyushu Univ., Ser. C, 11, 251 (1979).

    Google Scholar 

  9. R. Zana et al, manuscripts submitted for publication.

    Google Scholar 

  10. E.A.G. Aniansson, “Techniques and Applications of Fast Reactions in Solution”, D. Reidel Publ. Co., Dordrecht, Holland, 1979, p. 249.

    Google Scholar 

  11. This third process will give rise to measurable chemical relaxation signals only if the partition coefficient of the additive does not differ too much from one. However photochemical as well as fluorescence13 investigations can then be used to obtain the dissociation rate constant of additives sparingly soluble in water.

    Google Scholar 

  12. M. Grätzel, Nachr. Chem. Tech. Lab., 26, 515 (1978).

    Article  Google Scholar 

  13. M. Almgren, F. Grieser and J.K. Thomas, J. Am. Chem. Soc., 101, 279 (1979).

    Article  Google Scholar 

  14. D. Guillon and A. Skoulios, J. Phys. Lett., 38, L-137 (1977).

    Google Scholar 

  15. L.E. Scriven, “Micellization, Solubilization, and Microemulsions”, K.L. Mittal, Ed., Plenum Press, 1977, Vol. 11, p. 877.

    Google Scholar 

  16. E. Ruckenstein, “Micellization, Solubilization, and Microemulsions”, K.L. Mittal, Ed., Plenum Press, 1977, Vol. 11, p. 755.

    Google Scholar 

  17. J.R. Hansen, J. Phys. Chem., 78, 256 (1974).

    Article  Google Scholar 

  18. A. Deuss, Ph.D. thesis, Univ. Basel (1977); H.-F. Eicke and P. Zinsli, J. Colloid Interface Sci., 65, 131 (1978).

    Google Scholar 

  19. C. Kumar and D. Balasubramanian, J. Colloid Interface Sci., 74, 64 (1980).

    Article  Google Scholar 

  20. M. Ueno, H. Kishimoto and Y. Kyogoku, J. Colloid Interface Sci., 63, 113 (1978).

    Article  Google Scholar 

  21. M. Wong, J. Thomas and T. Nowak, J. Am. Chem. Soc., 99, 4730 (1977).

    Article  Google Scholar 

  22. M. Zulauf and H.-F. Eicke, J. Phys. Chem., 83, 480 (1979).

    Article  Google Scholar 

  23. D. Shah, R. Walker, W. Hshieh, N. Shah, S. Dwivedi, J. Nelander, R. Pepinski and D. Deamer, SPE 5815, presented at Improved Oil Recovery Symposium of SPE of AIME, Tulsa, Oklahoma, March 1976.

    Google Scholar 

  24. V. Bansal, K. Chinnaswamy, C. Ramachandran and D. Shah, J. Colloid Interface Sci., 72, 524 (1979).

    Article  Google Scholar 

  25. P. Lalanne, J. Biais, B. Clin, A.M. Bellocq and B. Lemanceau, J. Chim. Phys., 75, 236 (1978).

    Google Scholar 

  26. M. Wong, J. Thomas and M. Gratzel, J. Am. Chem. Soc., 98, 2391 (1976).

    Article  Google Scholar 

  27. G. Correll, R. Cheser III, F. Nome and J. Fendler, J. Am. Chem. Soc., 100, 1254 (1978).

    Article  Google Scholar 

  28. M. Eigen, Pure Appl. Chem., 6, 97 (1963).

    Article  Google Scholar 

  29. R. Zana, “Solution Chemistry of Surfactants”, K.L. Mittal,Ed., Vol. I, p. 473, Plenum Press, New York, 1979.

    Google Scholar 

  30. D. Shah and R. Hamlin, Science, 171, 483 (1971).

    Article  PubMed  Google Scholar 

  31. J. Biais, B. Clin, P. Lalanne and B. Lemanceau, J. Chim. Phys., 74, 1198 (1977).

    Google Scholar 

  32. T. Nguyen and H. Hadji Ghaffarie, J. Chim. Phys., 76, 513 (1979).

    Google Scholar 

  33. Yiv and R. Zana, J. Colloid Interface Sci., 5, TS5 (1978).

    Google Scholar 

  34. S. Yiv and R. Zana, in “Physique des Composes Amphiphiles”, Editions du CNRS, Paris, France, 1979, p. 53.

    Google Scholar 

  35. J. Gettins, D. Hall, P. Jobling, J. Rassing and E. Wyn-Jones, J. Chem. Soc. Faraday Trans.II, 74, 1957 (1978).

    Article  Google Scholar 

  36. J. Lang, A. Djavanbakht and R. Zana, J. Phys. Chem., in press.

    Google Scholar 

  37. J. Lang, A. Djavanbakht and R. Zana, in preparation.

    Google Scholar 

  38. A. Djavanbakht, J. Lang and R. Zana, J. Phys. Chem., 81, 2620 (1977).

    Article  Google Scholar 

  39. A. Djavanbakht, R. Zana and J. Lang, J. Phys. Chem., 81, 2630 (1977).

    Article  Google Scholar 

  40. J.H. Clarke, J. Doherty, R. Day and B. Robinson, J. Chem. Soc., Farad. Trans.I., 75, 132 (1979).

    Article  Google Scholar 

  41. F. Menger, J. Donahue and R. Williams, J. Am. Chem. Soc., 95, 286 (1973).

    Article  Google Scholar 

  42. H.-F. Eicke, J.C. Shepherd and A. Steinemann, J. Colloid Interface Sci., 56, 168 (1976).

    Article  Google Scholar 

  43. H.-F. Eicke and P. Zinsli, J. Colloid Interface Sci., 65, 131 (1978).

    Article  Google Scholar 

  44. B.H. Robinson, D. Steytler and R. Tack, J. Chem. Soc., Faraday Trans.I, 75, 481 (1979).

    Google Scholar 

  45. C. Tondre and R. Zana, J. Dispersion Sci. Techn., 1,179 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Zana, R., Lang, J. (1982). Dynamics of Microemulsions. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3494-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3494-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3496-5

  • Online ISBN: 978-1-4613-3494-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics