Thermometric and Surfactant Selective Potentiometric Titration Studies of Surfactant Binding to Phospholipid Vesicles

  • Gordon C. Kresheck
  • Kalidas Kale
  • James Erman


The interactions between sodium dodecyl sulphate and dodecyltrimethylammonium bromide with Asolectin (phospholipid extract from soybeans) vesicles has been studied using titration calorimetry, potentiometry using surfactant selective electrodes,and gel filtration chromatography. Exothermic heat changes were observed on mixing which depend on the concentration of Asolectin. The emf data were also observed to be related to the concentration of phospholipid. At low ratios of surfactant to Asolectin, the data were consistent with a mechanism in which there is a steady amount of surfactant bound to the vesicles until the apparent critical micelle concentration is reached. The free surfactant at that concentration, or the true critical micelle concentration, is always less than the critical micelle formation without Asolectin. All of the evidence points to the formation of mixed surfactant-phospholipid micelles when the apparent critical micelle concentration is reached.


Sodium Dodecyl Sulfate Critical Micelle Concentration Micelle Formation Sodium Dodecyl Sulfate Concentration Binding Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.D. Bangham, Ann. Rev. Biochem., 41, 753 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Sunamoto, H. Kondo and A. Yoshimatso, Biochim. Biophys. Acta, 510, 52 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Helenios and K. Simons, Biochim. Biophys. Acta, 415, 29 (1975).Google Scholar
  4. 4.
    H.H. Kamp, K.W.A. Wirtz, and L.L.M. Van Deenen, Biochim. Biophys. Acta, 398, 401 (1975).PubMedGoogle Scholar
  5. 5.
    C.A. Yu, L. Yu and T.E. King, J. Biol. Chem., 240, 1383 (1975).Google Scholar
  6. 6.
    Y. Katz and J.M. Diamond, J. Membrane Biol., 17, 101 (1974).CrossRefGoogle Scholar
  7. 7.
    S.A. Simon, W.L. Stone, and P. Busto-Latorre, Biochim. Biophys. Acta, 468, 378 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    F.A. Vilallonga, E.R. Garrett, and J.S. Hunt, J. Pharm. Sci., 66, 1229 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R.Y. Zaslavsky, A.A. Borovskaya, A.Y. Lisichkim, Y.A. Davidovich and S.V. Rogozhin, Chem. Phys. Lipids, 24, 297 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    G.C. Kresheck, K. Kale and M.D. Vallone, J. Colloid. Interface Sci., 73, 460 (1980).CrossRefGoogle Scholar
  11. 11.
    G.C. Kresheck and W.A. Hargraves, J. Colloid. Interface Sci., 48, 481 (1974).CrossRefGoogle Scholar
  12. 12.
    Y. Kagawa, A. Kandrach and E. Racker, J. Biol. Chem., 248, 676 (1973).PubMedGoogle Scholar
  13. 13.
    K.M. Kale, E.L. Cussler and D.F. Evans, J. Phys. Chem., 84, 593 (1980).CrossRefGoogle Scholar
  14. 14.
    G.C. Kresheck and C. Jones, J. Colloid. Interface Sci., 77, 278 (1980).CrossRefGoogle Scholar
  15. 15.
    I.M. Klotz, in “The Proteins” H. Neurath and K. Bailey, Editors, Vol. IB, pp. 727, Academic Press, New York, 1953.Google Scholar
  16. 16.
    R. Lumry and S. Rajender, Biopolymers, 9, 1125 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Gordon C. Kresheck
    • 1
  • Kalidas Kale
    • 1
  • James Erman
    • 1
  1. 1.Department of ChemistryNorthern Illinois UniversityDeKalbUSA

Personalised recommendations