Advertisement

Aspects of Bottom Boundary Layers in the Ocean

  • Gunnar Kullenberg
  • Ronald Zaneveld
Part of the Nato Conference Series book series (NATOCS, volume 8)

Abstract

The dynamics of the “bottom” boundary layer in the ocean is influenced by the rotation of the earth, the mean oceanic circulation being in approximate geostrophic balance. An Ekman boundary layer is developed to match the interior flow, in which the velocity vector changes direction towards the bottom. Seen from above the change is clockwise in the northern hemisphere. Based on a Reynolds number criterion, the oceanic Ekman boundary layer is turbulent, the typical Reynolds number being at least an order of magnitude larger than the critical one (Wimbush and Munk 1971). However, the stability of the density stratification also influences the dynamics of the boundary layer.

Keywords

Suspended Matter Friction Velocity Viscous Sublayer Ekman Layer Bottom Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armi, L., 1979, Some evidence for boundary mixing in the deep ocean. Journal Geophys. Res., 83 (CU): 1971.ADSCrossRefGoogle Scholar
  2. Armi, L. and Millard Jr., R. C., 1976, The “bottom” boundary layer of the deep ocean. Journal Geophys. Res. 81: 4783–4990.ADSCrossRefGoogle Scholar
  3. Bartz, R., Zaneveld, J. R. V. and Pak, H., 1978, A transmissometer for profiling and moored observations in water. Soc. Photo- Optical Instrumentation Engineers, l60, Ocean Optics V: 102–108.Google Scholar
  4. Bird, A. A. and Weatherly, G. L., 1980, Numerical simulations of the bottom boundary layer in the HEBBLE area. Abstract, EOS 6l (46): 1015.Google Scholar
  5. Biscaye, P. E. and Eittreim, S. L., 1974, Variations in benthic boundary layer phenomena: nepheloid layer in the North American Basin, in “Suspended Solids in Water”, R. J. Gibbs, ed., Plenum Marine Sc. Ser. 4:227–260, New York ( 1974 ).Google Scholar
  6. Bowden, K. F., 1962, Measurements of turbulence near the sea bed in a tidal current. Journal Geophys. Res. 67 (8): 3181–3186.ADSCrossRefGoogle Scholar
  7. Buchhave, P., (editor), 1976, The accuracy of flow measurements by laser-Doppler methods. Proceedings of the LDA Symposium, Copenhagen 1975, Hemisphere Publ. Comp.Google Scholar
  8. Caldwell, D. R. and Chriss, T. M., 1979, The viscous sublayer at the sea floor. Science, 205: 1131–1132.ADSCrossRefGoogle Scholar
  9. Carder, K. L. and Steward, R. G., 1980, In-situ holographic measurements of the size and settling velocities of ocean particles. Abstract, EOS 6l (46): 1017.Google Scholar
  10. Gardner, W. D., Hinga, K. R., Richardson, M. J. and Biscaye, P. E., 1980, Large, resuspended particles in sediment traps. Abstract, EOS 6l (U6): 1015.Google Scholar
  11. Gytre, T., 1975 , Ultrasonic measurements of ocean currents down to 1mm s-1, Conference Proceeding No. 32 of the IERE Conference on Instrumentation in Oceanography, 23–25 September 1975, University College, N. Wales, Bangor, U.K.,pp69–80.Google Scholar
  12. Hollister, C. D. and McCave, I. N., 1980, HEBBLE, the high energy benthic boundary experiment. Abstract, EOS 6l(U6):10l4.Google Scholar
  13. Jerlov, N. G., 1953, Particle distribution in the ocean. Rep. Swedish Deep-Sea Exped. 3: 1–59.Google Scholar
  14. Jerlov, N. G.,1976, Marine Optics. Elsevier Oceanographic Ser. L14 Amsterdam.Google Scholar
  15. Kullenberg, G., 1978, Preliminary results of near bottom current measurements in the Bothnian Sea. Finnish Marine Res. 244: 42–51.Google Scholar
  16. Kullenberg, G., 1978a, Light scattering observations in the north-west African upwelling region. Deep-Sea Res. 25: 525–542.CrossRefGoogle Scholar
  17. Kullenberg, G., 1978b, Light scattering observations in frontal zones. Journal Geophys. Res. 83 (C9): 4683–4690.ADSCrossRefGoogle Scholar
  18. Kullenberg, G. and Buchhave, P., 1974, An oceanographic in-situ laser Doppler anemometer. ICES C.M. 1974/C: 25.Google Scholar
  19. Kullenberg, G., Woods, J. D., Gytre, T., Wiley, R., Buchhave, P., and Crepon, M., 1975, Preliminary report on current meter intercomparisons at STARESO, August 1975, Institute of Physical Oceanography, University of Copenhagen.Google Scholar
  20. Kundu, P. K., 1977, On the importance of friction in two typical continental waters: off Oregon and Spanish Sahara, in: “Botton Turbulence”, J. C. J. Nihoul ed., Elsevier Oceanogr. Ser. 19:187–208, Amsterdam, 1977Google Scholar
  21. Monin, A. S. and Obukhow, A. M., 1953, Dimensionless characteristics of the turbulence in layers of the atmosphere near the earth, Doklady Nat. Acad., USSR 93 (12).Google Scholar
  22. Nielsen, P. B. and Jacobsen, T. S., 1980, An intercomparison of acoustic, electromagnetic, and laser Doppler current meters at STARESO 1975. Report No. 4l, Institute of Physical Oceanography, University of Copenhagen.Google Scholar
  23. Novell, A. R. M., Jumars, P. A. and Miller, D. C., 1980, Hydro-dynamic characteristics of fecal pellets. Abstract, EOS 6l (U6): 1017.Google Scholar
  24. Orr, M. H., Hess, F. R. and Howard, E. J., 1980, High frequency acoustic detection of suspended particle distributions. Abstract, EOS 6l(U6):10l6.Google Scholar
  25. Pak, H., Zaneveld, J. R. V. and Weatherly, G., 1980, Boundary layer and exchange processes. Abstract EOS 6l (k6): 1015.Google Scholar
  26. Richardson, M. J. and Wimbush, M., 1980, An exceptionally strong near-bottom current on the continental rise of Nova Scotia. Abstract EOS 6l(46):10l4.Google Scholar
  27. Rodhe, J., 1973, Sediment transport and accumulation at the Skagerrak-Kattegat border. Goteborgs Universitet, Oceano-grafiska Institutionen, Report No. 8.Google Scholar
  28. Sarmiento, J. L., Feely, H. W., Moore, W. S., Bainbridge, A. E. and Broecker, W. S., 1976, The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth and Planetary Science Letters 32: 357–370ADSCrossRefGoogle Scholar
  29. Shor, A. A. and Tucholke, B. E., 1980, Geologic effects of turbidity currents on the Nova Scotian continental rise. Abstract EOS 6l (46): 1015.Google Scholar
  30. Snodgrass, F. E., 1968, Deep-sea instrument capsule, Science 162: 78–87.ADSCrossRefGoogle Scholar
  31. Smith, J. D. and McLean, S. R., 1977, Boundary layer adjustments to bottom topography and suspended sediment, in “Bottom Turbulence”, J. C. J. Nihoul, ed., Elsevier Oceanogr. Ser. 19:123–152, Amsterdam 1977.Google Scholar
  32. Sternberg, R. W., 1969, Camera and dye-pulse system to measure bottom boundary layer flow in the deep sea, Deep-Sea Res. 16: 549–554.Google Scholar
  33. Tennekes, H., 1973, The logarithmic wind profile. J. Atm. Sc., 30: 234–238.ADSCrossRefGoogle Scholar
  34. Tucholke, B. E., Hollister, C. D., Biscaye, P. E. and Gardner, W. D., 1980, Current-produced bedforms in HEBBLE study area, Nova Scotia continental Rise. Abstract EOS 6l (46): 1014.Google Scholar
  35. Van Leer, J., Duing, W., Erath, R., Kennelly, E. and Speidel, A., 1974, The cyclosonde: an unattended vertical profiler for scalar and vector quantities in the upper ocean, Deep-Sea Res. 2l(5)385–400.Google Scholar
  36. Weatherly, G. L., 1972, A study of the bottom boundary layer of the Florida Current, Journal Phys. Oceanogr., 2: 54–72.Google Scholar
  37. Weatherly, G. L., 1977, Bottom boundary layer observations in the Florida Current, in: “Bottom Turbulence”, J. C. J. Nihoul, ed., Elsevier Oceanogr. Ser. 19:237–254, Amsterdam, 1977.Google Scholar
  38. Weatherly, G. L. and Van Leer, J. C., 1977, On the importance of stable stratification to the structure of the bottom boundary layer on the Western Florida shelf, in “Bottom Turbulence”, J. C. J. Nihoul, ed., Elsevier Oceanogr. Ser. 19:103, Amsterdam, 1977.Google Scholar
  39. Weatherly, G. L., Kelley, E. A., Zaneveld, J. R. V., Pak, H., Richardson, M. J. and Wimbush, M., 1980, A deep, narrow, thin filament of the Western Boundary Undercurrent (WBUC), Abstract EOS 6l(k6):10l6.Google Scholar
  40. Williams 3rd, A. J. and Tochko, J. S., 1977, An acoustic sensor of velocity for benthic boundary layer studies, in: “Bottom Turbulence,” J. C. J. Nihoul, ed., Elsevier Oceanogr. Ser. 19: 83.Google Scholar
  41. Williams 3rd, A. J. and Weatherley, G., 1980, Reynolds stress and velocity profile at the HEBBLE site 400N, 63°W. Abstract EOS 61: 1015.Google Scholar
  42. Wimbush, M. and Munk, W. H., 1971, The benthic boundary layer, in: “The Sea” 4:731–758, A. Maxwell, J. Wiley and Sons, ed., New York, 1971.Google Scholar
  43. Yingst, J. Y. and Aller, R. C., 1980, Biological activity and associated sedimentary structures in HEBBLE area deposits, Abstract EOS 6l (46): 1014.Google Scholar
  44. Zaneveld, J. R. V. and Pak, H., 1973, Method for the determination of the index of refraction of particles suspended in the ocean. Jour. Optical Soc. Am. 63: 321–324.ADSCrossRefGoogle Scholar
  45. Zaneveld, J. R. V., Pak, H., Biscaye, P., Gardner, W. and Richardson, M. J., 1980, The interrelationship of beam transmission, nephels and suspended particulate matter, Abstract EOS 6l (46): 1017.Google Scholar
  46. Zaneveld, J. R. V., Pak, H., Biscaye, P., Gardner, W. and Richardson, M. J., 1980, The interrelationship of beam transmission, nephels and suspended particulate matter, Abstract EOS 6l (46): 1017.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Gunnar Kullenberg
    • 1
  • Ronald Zaneveld
    • 2
  1. 1.Inst, of Physical OceanographyUniversity of CopenhagenCopenhagenDenmark
  2. 2.School of OceanographyOregon State UniversityOregonUSA

Personalised recommendations