Advertisement

Electron Density Functions in Organic Chemistry

  • Andrew StreitwieserJr.
  • David L. Grier
  • Boris A. B. Kohler
  • Erich R. Vorpagel
  • George W. Schriver

Abstract

A few years ago we computed the electron density function for methyl lithium1 and called attention to the low value of the electron density, $\rho(\equiv \rho({\mathop{\rm r}\limits_\sim}_1)$, the one-electron density function2) at its minimum along the C-Li internuclear axis. This low value did not seem to be consistent with significant C-Li covalency and we accordingly wrote that the carbon-lithium bond is essentially wholly ionic. Fig. 1 presents a perspective plot of ρ for LiCH3 showing the low value of the shared electron density for C-Li compared to C-H. The electron density function has found frequent important use in understanding bonding and in testing our bonding concepts.2,3 The conclusion that organolithium compounds are best interpreted simply as contact ion pairs not much different from lithium fluoride came as a complete surprise to us. We had been trained (and we even taught in the past) that the properties of organolithium compounds required substantial carbon-lithium covalency; but the electron density patterns computed for a number of organolithium compounds forced us to change our views. Not everyone agrees with us and our conclusion is still controversial. For example, one reviewer wrote of our conclusions, “…is surely wrong. There must be an error in the program.”

Keywords

Projection Function Electron Density Function Molecular Plane Lithium Fluoride Internuclear Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Streitwieser, Jr., J. E. Williams, Jr., S. Alexandratos, and J. M. McKelvey, J. Am. Chem. Soc. 98:4778 (1976).CrossRefGoogle Scholar
  2. 2.
    E. Steiner, “The Determination of and Interpretation of Molecular Wave Functions,” Cambridge Univ. Press, London (1976).Google Scholar
  3. 3. (a)
    C. W. Kern, and M. Karplus, Chem. Phys. 40:1374 (1964);Google Scholar
  4. 3. (b)
    R. F. W. Bader, and W. H. Henneker, J. Am. Chem. Soc. 87:3063 (1965); and many subsequent papers.CrossRefGoogle Scholar
  5. 4.
    G. D. Graham, D. S. Marynick, and W. N. Lipscomb, J. Am. Chem. Soc. 102:4572 (1980).CrossRefGoogle Scholar
  6. 5.
    K. Ruedenberg, Rev. Mod. Phys. 34:326 (1962).CrossRefGoogle Scholar
  7. 6.
    W. Kutzelnigg, Angew. Chem. Intl. Ed. Engl. 12:546 (1973).CrossRefGoogle Scholar
  8. 7.
    P. Politzer and R. G. Parr, J. Chem. Phys. 64:4634 (1976).CrossRefGoogle Scholar
  9. 8.
    R. J. Boyd, J. Chem. Phys. 66:456 (1977).CrossRefGoogle Scholar
  10. 9.
    H. Koster, D. Thoennes, and E. Weiss, J. Organometal. Chem. 160:1 (1978).CrossRefGoogle Scholar
  11. 10.
    J. B. Collins, A. Streitwieser, Jr., and J. M. McKelvey, Comp. and Chem. 3:79 (1979).CrossRefGoogle Scholar
  12. 11.
    A. Streitwieser, Jr., J. B. Collins, J. M. McKelvey, D. Grier, J. Sender, and A. G. Toczko, Proc. Natl. Acad. Sci. USA 76:2499 (1979).CrossRefGoogle Scholar
  13. 12.
    P. Politzer, and R. R. Harris, J. Am. Chem. Soc. 92:6451 (1970).CrossRefGoogle Scholar
  14. 13.
    P. Politzer and E. W. Stout, Jr., Chem. Phys. Letters 8:519 (1971).CrossRefGoogle Scholar
  15. 14.
    P. Politzer, Theoret. Chim. Acta. 23:203 (1971).CrossRefGoogle Scholar
  16. 15.
    P. Politzer and P. H. Reggio, J. Am. Chem. Soc. 94:8308 (1972).CrossRefGoogle Scholar
  17. 16.
    P. Politzer and A. Politzer, J. Am. Chem. Soc. 95:5450 (1973).CrossRefGoogle Scholar
  18. 17.
    P. Politzer, J. D. Elliott, and B. F. Meroney, Chem. Phys. Lett. 23:331 (1973).CrossRefGoogle Scholar
  19. 18.
    R. S. Evans, and J. E. Huheey, Chem. Phys. Lett. 19:114 (1973).CrossRefGoogle Scholar
  20. 19.
    S. M. Dean, and W. G. Richards, Nature, 256:473 (1975).CrossRefGoogle Scholar
  21. 20.
    C. L. Hirshfeld, Theoret. Chim. Acta. 44:129 (1977).CrossRefGoogle Scholar
  22. 21.
    S. Iwata, Chem. Phys. Lett. 69:305 (1980).CrossRefGoogle Scholar
  23. 22.
    B. J. Ransil and J. J. Sinai, J. Chem. Phys. 46:4050 (1967).CrossRefGoogle Scholar
  24. 23.
    R. F. W. Bader, P. M. Beddall and P. E. Cade, J. Am. Chem. Soc. 93:3095 (1971).CrossRefGoogle Scholar
  25. 24.
    R. F. W. Bader and P. M. Beddall, J. Chem. Phys. 56:3320 (1972).CrossRefGoogle Scholar
  26. 25. (a)
    For recent reviews, see (a) R. F. W. Bader, Acct. Chem. Res. 8:34 (1975); (b) R. F. W. Bader and T. T. Nguyen-Dans, Adv. Quantum Chem. in press.CrossRefGoogle Scholar
  27. 25. (b)
    For recent reviews, see (b) R. F. W. Bader and T. T. Nguyen-Dans, Adv. Quantum Chem. in press.Google Scholar
  28. 26.
    J. B. Collins and A. Streitwieser, Jr., J. Compt. Chem. 1:81 (1980).CrossRefGoogle Scholar
  29. 27.
    J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102:939 (1980).CrossRefGoogle Scholar
  30. 28.
    M. F. Guest, I. H. Hiller, and V. R. Saunders, J. Organometal. Chem. 44:59 (1972).CrossRefGoogle Scholar
  31. 29.
    N. C. Baird, R. F. Barr, and R. K. Datta, J. Organometal. Chem. 59:65 (1973).CrossRefGoogle Scholar
  32. 30.
    T. Clark, P. V. R. Schleyer, and J. A. Pople, J.C.S. Chem. Comm. 137 (1978).Google Scholar
  33. 31.
    H. Dietrich, J. Organometal. Chem. 205:291 (1981).CrossRefGoogle Scholar
  34. 32.
    A few of the more recent references are: R. R. Luchese, and H. F. Schaefer, J. Am. Chem. Soc. 100:298 (1978); J. A. Altman, I. G. Csizmadia, A. Robb, K. Yates, and P. Yates, J. Am. Chem. Soc. 100:1653 (1978); S. Bell, Mol. Phys. 37:255 (1979); J. D. Goddard, and H. F. Schaefer, J. Chem. Phys., 70:5117 (1979); S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, unpublished.CrossRefGoogle Scholar
  35. 33.
    R. J. Beunker and S. D. Peyerimhoff, J. Chem. Phys. 53:1368 (1970).CrossRefGoogle Scholar
  36. 34.
    Ground State only: J. H. Dunning, Jr., and N. W. Winter, J. Chem. Phys. 55:3360 (1971).CrossRefGoogle Scholar
  37. 35.
    D. E. Freeman, and W. Klemperer, J. Chem. Phys. 40:604 (1964); 45:52 (1966); J. R. Lombardi, D. E. Freeman, and W. Klemperer, J. Chem. Phys. 46:2746 (1967).CrossRefGoogle Scholar
  38. 36.
    N. J. Turro, and G. L. Farrington, J. Am. Chem. Soc. 102:6051, 6056 (1980); N. J. Turro, “Modern Molecular Photchemistry,” Benjamin-Cummings (1978).CrossRefGoogle Scholar
  39. 37.
    D. L. Grier, and A. Streitwieser, Jr., J. Am. Chem. Soc. submitted.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Andrew StreitwieserJr.
    • 1
  • David L. Grier
    • 1
  • Boris A. B. Kohler
    • 1
  • Erich R. Vorpagel
    • 1
  • George W. Schriver
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations